Алканы виды. Алканы – определение, строение, физические и химические свойства

Алканами называют насыщенные углеводороды. В их молекулах атомы имеют одинарные связи. Структура определяется формулой CnH2n+2. Рассмотрим алканы: химические свойства, виды, применение.

Структура соединения

В структуре углерода есть четыре орбиты, по которым вращаются атомы. Орбитали обладают одинаковой формой, энергией.

Обратите внимание! Углы между ними составляют 109 градусов и 28 минут, они направлены на вершины тетраэдра.

Простая углеродная связь позволяет алкановым молекулам свободно вращаться, в результате чего структуры приобретают различные формы, образуя вершины при атомах углерода.

Все алкановые соединения разделяются на две основные группы:

  1. Углеводороды алифатического соединения. Такие структуры обладают линейным соединением. Общая формула выглядит таким образом: CnH2n+2. Значение n равно или больше единицы, означает количество углеродных атомов.
  2. Циклоалканы циклической структуры. Химические свойства циклических алканов значительно отличаются от свойств линейных соединений. Формула циклоалканов в некоторой степени делает их схожими с углеводородами, обладающими тройной атомной связью, то есть с алкинами.

Виды алканов

Существует несколько видов алкановых соединений, каждой из которых имеет свою формулу, строение, химические свойства и алкильный заместитель. Таблица содержит гомологический ряд

Название алканов

Общая формула насыщенных углеводородов — CnH2n+2. Изменяя значение n, получают соединение с простой межатомной связью.

Полезное видео: алканы — строение молекул, физические свойства

Разновидности алканов, варианты реакций

В естественных условиях алканы являются химически инертными соединения. Углеводороды не реагируют на контактирование с концентратом азотной и серной кислоты, щелочью и перманганатом калия.

Одинарные молекулярные связи определяют реакции, характерные для алканов. Алкановые цепочки отличаются неполярной и слабо поляризуемой связью. Она несколько длиннее, нежели С-Н.

Общая формула алканов

Реакция замещения

Парафиновые вещества отличаются незначительной химической активностью. Объясняется это повышенной прочностью цепной связи, которую непросто разорвать. Для разрушения используют гомологический механизм, в котором принимают участие свободные радикалы.

Для алканов более естественны реакции замещения. Они не реагируют на молекулы воды и заряженные ионы. При замещении происходит замена водородных частиц галогеновыми и прочими активными элементами. Среди подобных процессов выделяют галогенирование, нитрирование и сульфохлорирование. Такие реакции используют для образования алкановых производных.

Свободнорадикальное замещение происходит в три основных этапа:

  1. Появление цепочки, на основе которой создаются свободные радикалы. В качестве катализаторов используют нагревание и ультрафиолетовый свет.
  2. Развитие цепочки, в структуре которой происходят взаимодействия активных и неактивных частиц. Так формируются молекулы и радикальные частицы.
  3. В завершение цепочка обрывается. Активные элементы создают новые комбинации или вовсе исчезают. Цепная реакция завершается.

Галогенирование

Процесс осуществляется по радикальному типу. Галогенирование происходит под воздействием ультрафиолета и температурного нагрева углеводородной и галогеновой смеси.

Весь процесс происходит по правилу Марковникова. Суть его заключается в том, что первым галогенированию подвергается атом водорода, принадлежащий гидрированному углероду. Процесс начинается с третичного атома и заканчивается первичным углеродом.

Сульфохлорирование

Другое название – реакция Рида. Осуществляется она методом свободнорадикального замещения. Таким образом, алканы реагируют на действие комбинации серного диоксида и хлора под воздействием ультрафиолетового излучения.

Реакция начинается с активизации цепного механизма. В это время из хлора выделяются два радикала. Действие одного направлено на алкан, в результате формируется молекула хлорводорода и алкильный элемент. Другой радикал соединяется с диоксидом серы, создавая сложную комбинацию. Для равновесия из другой молекулы отбирают один атом хлора. В итоге получают сульфонилхлорид алкана. Это вещество используют для выработки поверхностно-активных компонентов.

Сульфохлорирование

Нитрование

Процесс нитрования подразумевает соединение насыщенных углеродов с газообразным оксидом четырехвалентного азота и азотной кислотой, доведенной до 10% раствора. Для протекания реакции потребуется низкий уровень давления и высокая температура, приблизительно 104 градуса. В результате нитрования получают нитроалканы.

Отщепление

Посредством отделения атомов проводят реакции дегидрирования. Молекулярная частица метана полностью разлагается под влиянием температуры.

Дегидрирование

Если от углеродной решетки парафина (кроме метана) отделить атом водорода, образуются непредельные соединения. Эти реакции осуществляются в условиях значительных температурных режимов (400-600 градусов). Также используются различные металлические катализаторы.

Получение алканов происходит путем проведения гидрирования непредельных углеводородов.

Процесс разложения

При влиянии температур во время алкановых реакций могут происходить разрывы молекулярных связей, выделение активных радикалов. Эти процессы известны под названием пиролиз и крекинг.

При нагревании реакционного компонента до 500 градусов, молекулы начинают разлагаться, а на их месте формируются сложные радикальные алкильные смеси. Таким способом получают алканы и алкены в промышленности.

Окисление

Это химические реакции, основанные на отдаче электронов. Для парафинов характерно автоокисление. В процессе используется окисление насыщенных углеводородов свободными радикалами. Алкановые соединения в жидком состоянии преобразуются в гидроперекись. Сначала парафин вступает в реакцию с кислородом. Образуются активные радикалы. Затем происходит реакция алкильной частицы со второй молекулой кислорода. Формируется перекисный радикал, который в последствие взаимодействует с алкановой молекулой. В результате процесса выделяется гидроперекись.

Реакция окисления алканов

Применение алканов

Углеродные соединения имеют широкое применение практически во всех основных сферах человеческой жизни. Некоторые из видов соединений являются незаменимыми для определенных отраслей производства и комфортного существования современного человека.

Газообразные алканы – основа ценного топлива. Главным компонентом большинства газов является метан.

Метан обладает способностью создавать и выделять большое количество тепла. Поэтому его в значительных объемах применяют в промышленности, для потребления в бытовых условиях. При смешивании бутана и пропана получают хорошее бытовое топливо.

Метан используют при производстве таких продуктов:

  • метанол;
  • растворители;
  • фреон;
  • типографская краска;
  • топливо;
  • синтез-газ;
  • ацетилен;
  • формальдегид;
  • муравьиная кислота;
  • пластмасса.

Применение метана

Жидкие углеводороды предназначены для создания топлива для двигателей и ракет, растворителей.

Высшие углеводороды, где количество атомов углерода превышает 20, участвуют в производстве смазочных веществ, лакокрасочной продукции, мыла и моющих средств.

Комбинация жирных углеводородов, в которых менее 15 атомов Н, являет собой вазелиновое масло. Эта безвкусная прозрачная жидкость применяется в косметике, в создании парфюмов, в медицинских целях.

Вазелин – результат соединения твердых и жирных алканов с количеством атомов углерода меньше 25. Вещество участвует в создании медицинских мазей.

Парафин, полученный в результате комбинирования твердых алканов, является твердой безвкусной массой, белого цвета и без аромата. Из вещества производят свечи, пропитывающую субстанцию для упаковочной бумаги и спичек. Также парафин популярен при осуществлении тепловых процедур в косметологии и медицине.

Обратите внимание! На основе алкановых смесей также делают синтетические волокна, пластмассы, моющую химию и каучук.

Галогенопроизводные алкановые соединения выполняют функции растворителей, хладагентов, а также основного вещества для дальнейшего синтеза.

Полезное видео: алканы — химические свойства

Вывод

Алканы являются ациклическими углеводородными соединениями, обладающими линейной или разветвленной структурой. Между атомами установлена одинарная связь, которая не поддается разрушению. Реакции алканов, основанные на замещении молекул, свойственные этому виду соединений. Гомологический ряд имеет общую структурную формулу CnH2n+2. Углеводороды относятся к насыщенному классу, поскольку содержат максимально допустимое количество атомов водорода.

Вконтакте

ОПРЕДЕЛЕНИЕ

Алканами называются насыщенные углеводороды, молекулы которых состоят из атомов углерода и водорода, связанных между собой только σ-связями.

В обычных условиях (при 25 o С и атмосферном давлении) первые четыре члена гомологического ряда алканов (C 1 — C 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы. Строение молекулы алканов на примере метана приведено на рис. 1.

Рис. 1. Строение молекулы метана.

Алканы практически не растворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан, диэтиловый эфир и др.

Получение алканов

Основные источники различных предельных углеводородов, содержащих до 40 атомов углерода, — нефть и природный газ. Алканы с небольшим числом атомов углерода (1 - 10) можно выделить фракционной перегонкой природного газа или бензиновой фракции нефти.

Различают промышленные (I) и лабораторные (II) способы получения алканов.

C + H 2 → CH 4 (kat = Ni, t 0);

CO + 3H 2 → CH 4 + H 2 O (kat = Ni, t 0 = 200 - 300);

CO 2 + 4H 2 → CH 4 + 2H 2 O (kat, t 0).

— гидрирование непредельных углеводородов

CH 3 -CH=CH 2 + H 2 →CH 3 -CH 2 -CH 3 (kat = Ni, t 0);

— восстановление галогеналканов

C 2 H 5 I + HI →C 2 H 6 + I 2 (t 0);

— реакции щелочного плавления солей одноосновных органических кислот

C 2 H 5 -COONa + NaOH→ C 2 H 6 + Na 2 CO 3 (t 0);

— взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

2C 2 H 5 Br + 2Na → CH 3 -CH 2 -CH 2 -CH 3 + 2NaBr;

— электролиз солей одноосновных органических кислот

2C 2 H 5 COONa + 2H 2 O→H 2 + 2NaOH + C 4 H 10 + 2CO 2 ;

К(-): 2H 2 O + 2e → H 2 + 2OH — ;

A(+):2C 2 H 5 COO — -2e → 2C 2 H 5 COO + → 2C 2 H 5 + + 2CO 2 .

Химические свойства алканов

Алканы относятся к наименее реакционноспособным органическим соединениям, что объясняется их строением.

Алканы в обычных условиях не реагируют с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Для алканов наиболее характерны реакции, протекающие по радикальному механизму. Энергетически более выгоден гомолитический разрыв связей C-H и C-C, чем их гетеролитический разрыв.

Реакции радикального замещения наиболее легко протекают по третичному, дплее - по вторичному и в последнюю очередь по первичному атому углерода.

Все химические превращения алканов протекают с расщеплением:

1) cвязей C-H

— галогенирование (S R)

CH 4 + Cl 2 → CH 3 Cl + HCl (hv );

CH 3 -CH 2 -CH 3 + Br 2 → CH 3 -CHBr-CH 3 + HBr (hv ).

— нитрование (S R)

CH 3 -C(CH 3)H-CH 3 + HONO 2 (dilute) → CH 3 -C(NO 2)H-CH 3 + H 2 O (t 0).

— сульфохлорирование (S R)

R-H + SO 2 + Cl 2 → RSO 2 Cl + HCl (hv ).

— дегидрирование

CH 3 -CH 3 → CH 2 =CH 2 + H 2 (kat = Ni, t 0).

— дегидроциклизация

CH 3 (CH 2) 4 CH 3 → C 6 H 6 + 4H 2 (kat = Cr 2 O 3 , t 0).

2) связей C-H и C-C

— изомеризация (внутримолекулярная перегруппировка)

CH 3 -CH 2 -CH 2 -CH 3 →CH 3 -C(CH 3)H-CH 3 (kat=AlCl 3 , t 0).

— окисление

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 → 4CH 3 COOH + 2H 2 O (t 0 , p);

C n H 2n+2 + (1,5n + 0,5)O 2 → nCO 2 + (n+1) H 2 O (t 0).

Применение алканов

Алканы нашли применение в различных отраслях промышленности. Рассмотрим подробнее, на примере некоторых представителей гомологического ряда, а также смесей алканов.

Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений - спиртов, альдегидов, кислот. Пропан применяется как автомобильное топливо. Бутан используется для получения бутадиена, являющегося сырьем для производства синтетического каучука.

Смесь жидких и твердых алканов до С 25 , называемая вазелином применяется в медицине как основа мазей. Смесь твердых алканов С 18 - С 25 (парафин) применяется для пропитки различных материалов (бумага, ткани, древесина) для придания им гидрофобных свойств, т.е. несмачиваемости водой. В медицине используется для физиотерапевтическихпроцедур (парафинолечение).

Примеры решения задач

ПРИМЕР 1

Задание При хлорировании метана получено 1,54 г соединения, плотность паров по воздуху которого равна 5,31. Рассчитайте массу диоксида марганца MnO 2 , которая потребуется для получения хлора, если соотношение объемов метана и хлора, введенных в реакцию равно 1:2.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

Найдем молярную массу газа, образующегося при хлорировании метана:

M gas = 29 ×D air (gas) = 29 × 5,31 = 154 г/моль.

Это тетрахлорметан - CCl 4 . Запишем уравнение реакции и расставим стехиометрические коэффициенты:

CH 4 + 4Cl 2 = CCl 4 + 4HCl.

Рассчитаем количество вещества тетрахлорметана:

n(CCl 4) = m(CCl 4) / M(CCl 4);

n(CCl 4) = 1,54 / 154 = 0,01 моль.

Согласно уравнению реакции n(CCl 4) : n(CH 4) = 1: 1, значит

n(CH 4) = n(CCl 4) = 0,01 моль.

Тогда, количество вещества хлора должно быть равно n(Cl 2) = 2 × 4 n(CH 4), т.е. n(Cl 2) = 8 × 0,01 = 0,08 моль.

Запишем уравнение реакции получения хлора:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O.

Число моль диоксида марганца равно 0,08 моль, т.к. n(Cl 2) :n(MnO 2) = 1: 1. Найдем массу диоксида марганца:

m(MnO 2) = n(MnO 2) ×M(MnO 2);

M(MnO 2) = Ar(Mn) + 2×Ar(O) = 55 + 2×16 = 87 г/моль;

m(MnO 2) = 0,08 × 87 = 10,4 г.

Ответ Масса диоксида марганца равна 10,4 г.

ПРИМЕР 2

Задание Установите молекулярную формулу трихлоралкана, массовая доля хлора в котором составляет 72,20%. Составьте структурные формулы всех возможных изомеров и дайте названия веществ по заместительной номенклатуре ИЮПАК.
Ответ Запишем общую формулу трихлоралкеана:

C n H 2 n -1 Cl 3 .

По формуле

ω(Cl) = 3×Ar(Cl) / Mr(C n H 2 n -1 Cl 3) × 100%

рассчитаем молекулярную массу трихлоралкана:

Mr(C n H 2 n -1 Cl 3) = 3 × 35,5 / 72,20 × 100% = 147,5.

Найдем значение n:

12n + 2n - 1 + 35,5×3 = 147,5;

Следовательно, формула трихлоралкана C 3 H 5 Cl 3 .

Составим структурные формулы изомеров: 1,2,3-трихлорпропан (1), 1,1,2-трихлорпропан (2), 1,1,3-трихлорпропан (3), 1,1,1-трихлорпропан (4) и 1,2,2-трихлорпропан (5).

CH 2 Cl-CHCl-CH 2 Cl (1);

CHCl 2 -CHCl-CH 3 (2);

CHCl 2 -CH 2 -CH 2 Cl (3);

CCl 3 -CH 2 -CH 3 (4);

Предельными углеводородами, или парафинами, называются такие биосоединения, в молекулах которых атомы углерода соединены простой (одинарной) связью, а все другие единицы валентности насыщены атомами водорода.

Алканы: физические свойства

Отщепление водорода от молекулы алкана, или дегидрирование, в присутствии катализаторов и при нагревании (до 460 °С) позволяет получить необходимые алкены. Разработаны методы окисления алканов при невысоких температурах в присутствии катализаторов (солей магния). Это позволяет направленно влиять на ход реакции и получать необходимые продукты окисления в процессе химического синтеза. К примеру, при окислении высших алканов получают разнообразные высшие спирты или высшие жирные кислоты.

Расщепления алканов также происходит и в других условиях (горение, крекинг). Насыщенные углеводороды горят синим пламенем с выделением огромного количества тепла. Эти свойства позволяют использовать их в качестве высококалорийного топлива как в быту, так и в промышленности.

Физические свойства . В обычных условиях первые четыре члена гомологического ряда алканов (С 1 - С 4) - газы. Нормальные алканы от пентана до гептадекана ( C 5 - C 17 ) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной моле­кулярной массы, возрастают температуры кипения и плавления алканов . При одинаковом числе атомов углерода в молекуле ал­каны с разветвленным строением имеют более низкие температу­ры кипения, чем нормальные алканы .

Алканы практически нерастворимы в воде, так как их молеку­лы малополярны и не взаимодействуют с молекулами воды, они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан и др. Жидкие алканы легко смешиваются друг с другом.

Основные природные источники алканов - нефть и природный газ. Различные фракции нефти содержат алканы от C 5 H 12 до С 30 Н 62 . Природный газ состоит из метана (95%) с примесью этана и пропана.

Из синтетических методов получения алканов можно выделить следующие:/>

1 . Получение из ненасыщенных углеводородов. Взаимодействие алкенов или алкинов с водородом ("гидрирование") происходит в присутствии металлических катализаторов (/>Ni , Pd ) при
нагревании:

СН з —C ≡СН + 2Н 2 → СН 3 -СН 2 -СН 3 .

2 . Получение из галогенпротводных . При нагревании моногалогензамещенных алканов с металлическим натрием получают алканы с удвоенным числом атомов углерода (реакция Вюрца ):/>

С 2 Н 5 Br + 2 Na + Br — C 2 H 5 → C 2 H 5 — C 2 H 5 + 2 NaBr .

Подобную реакцию не проводят с двумя разными галогензамещенными алканами , поскольку при этом получается смесь трех различных алканов

3 . Получение из солей карбоновых кислот. При сплавлении безводных солей карбоновых кислот с щелочами получаются алканы , содержащие на один атом углерода меньше по сравнению с углеродной цепью исходных карбоновых кислот:/>

4 .Получение метана. В электрической дуге, горящей в атмосфере водорода, образуется значительное количество метана:/>

С + 2Н 2 → СН 4 .

Такая же реакция идет при нагревании углерода в атмосфере водорода до 400-500 °С при повышенном давлении в присутствии катализатора.

В лабораторных условиях метан часто получают из карбида алюминия:

А l 4 С 3 + 12Н 2 О = ЗСН 4 + 4А l (ОН) 3 .

Химические свойства . В обычных условиях алканы химически инертны . Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами, с концентрированными и расплавленными щелочами, не окисляются сильными окислителями — перманганатом калия KMn О 4 и т.п.

Химическая устойчивость алканов объясняется высокой проч­ностью s — связей С-С и С-Н, а также их неполярностью . Непо­лярные связи С-С и С-Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характер­ны радикальные реакции, в результате которых получаются сое­динения, где атомы водорода замещены на другие атомы или группы атомов. Следовательно, алканы вступают в реакции, про­текающие по механизму радикального замещения, обозначаемого символом S R (от англ , substitution radicalic ). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

1. Галогенирование . При взаимодействии алканов с галогена­ми (хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов . Общая схема этой реакции показана на примере метана:/>

б) Рост цепи. Радикал хлора отнимает у молекулы алкана атом водорода:

Cl · + СН 4 →НС/>l + СН 3 ·

При этом образуется алкильный радикал, который отнимает атом хлора у молекулы хлора:

СН 3 · + С l 2 →СН 3 С l + С l ·

Эти реакции повторяются до тех пор, пока не произойдет обрыв цепи по одной из реакций:

Cl · + Cl · → С l/> 2 , СН 3 · + СН 3 · → С 2 Н 6 , СН 3 · + Cl · → СН 3 С l ·

Суммарное уравнение реакции:

hv
СН 4 + Сl 2 СН 3 Сl + НСl.

Образующийся хлорметан может подвергаться дальнейшему хло­рированию, давая смесь продуктов CH 2 Cl 2 , CHCl 3 , СС l 4 по схеме (*).

Развитие теории цепных свободнорадикальных реакций тесно связа­но с именем выдающегося русского ученого, лауреата Нобелевской премии Н.И. Семенова (1896-1986).

2. Нитрование (реакция Коновалова) . При действии разбав­ленной азотной кислоты на алканы при 140°С и небольшом дав­лении протекает радикальная реакция:/>

При радикальных реакциях (галогенирование, нитрование) в первую очередь замешаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода. Это объясняется тем, что легче всего разрывается гомолитически связь третичного атома углерода с водородом (энергия связи 376 кДж/моль), затем - вторичного (390 кДж/моль) и только потом - первичного (415 кДж/моль).

3. Изомеризация . Нормальные алканы при определенных условиях могут превращаться в алканы с разветвленной цепью:/>

4. Крекинг - это гемолитический разрыв связей С-С , который протекает при нагревании и под действием катализаторов.
При крекинге высших алканов образуются алкены и низшие ал­каны , при крекинге метана и этана образуются ацетилен:/>

C/> 8 H 18 → C 4 H 10 + С 4 Н 8 ,/>

2СН 4 → С 2 Н 2 + ЗН 2 ,

С 2 Н 6 → С 2 Н 2 + 2Н 2 .

Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин, керосин и другие ценные продукты.

5. Окисление . При мягком окислении метана кислородом воздуха в присутствии различных катализаторов могут быть получе­ны метиловый спирт, формальдегид, муравьиная кислота:

Мягкое каталитическое окисление бутана кислородом воздуха — один из промышленных способов получения уксусной кислоты:

t °
2 C 4/> H/> 10 + 5 O/> 2 → 4 CH/> 3 COOH/> + 2Н 2 О .
кат

На воздухе алканы сгорают до СО 2 и Н 2 О:/>

С n Н 2 n +2 + (З n +1)/2О 2 = n СО 2 + (n +1)Н 2 О.

Простейшими органическими соединениями являются углеводороды , состоящие из углерода и водорода. В зависимости от характера химических связей в углеводородах и соотношения между углеродом и водородом они подразделяются на предельные и непредельные (алкены, алкины и др.)

Предельными углеводородами (алканами, углеводородами метанового ряда) называются соединения углерода с водородом, в молекулах которых каждый атом углерода затрачивает на соединение с любым другим соседним атомом не более одной валентности, причем, все не затраченные на соединение с углеродом валентности насыщены водородом. Все атомы углерода в алканах находятся в sp 3 - состоянии. Предельные углеводороды образуют гомологический ряд, характеризующийся общей формулой С n Н 2n+2 . Родоначальником этого ряда является метан.

Изомерия. Номенклатура.

Алканы с n=1,2,3 могут существовать только в виде одного изомера

Начиная с n=4, появляется явление структурной изомерии.

Число структурных изомеров алканов быстро растет с увеличением числа углеродных атомов, например, пентан имеет 3 изомера, гептан - 9 и т.д.

Число изомеров алканов увеличивается и за счет возможных стереоизомеров. Начиная с C 7 Н 16 возможно существование хиральных молекул, которые образуют два энантиомера.

Номенклатура алканов.

Доминирующей номенклатурой является номенклатура IUPAC. В тоже время в ней присутствуют элементы тривиальных названий. Так, первые четыре члена гомологического ряда алканов имеют тривиальные названия.

СН 4 - метан

С 2 Н 6 - этан

С 3 Н 8 - пропан

С 4 Н 10 - бутан.

Названия остальных гомологов образованы от греческих латинских числительных. Так, для следующих членов ряда нормального (неразветвленного) строения используются названия:

С 5 Н 12 - пентан, С 6 Н 14 - гексан, С 7 Н 18 - гептан,

С 14 Н 30 - тетрадекан, С 15 Н 32 - пентадекан и т.д.

Основные правила IUPAC для разветвленных алканов

а) выбирают наиболее длинную неразветвленную цепь, название которой составляет основу (корень). К этой основе прибавляют суффикс “ан”

б) нумеруют эту цепь по принципу наименьших локантов,

в) заместитель указывают в виде префиксов в алфавитном порядке с указанием места нахождения. Если при родоначальной структуре находятся несколько одинаковых заместителей, то их количество указывают греческими числительными.

В зависимости от числа других углеродных атомов, с которыми непосредственно связан рассматриваемый углеродный атом, различают: первичные, вторичные, третичные и четвертичные углеродные атомы.

В качестве заместителей в разветвленных алканах фигурируют алкильные группы или алкильные радикалы, которые рассматриваются как результат отщепления от молекулы алкана одного водородного атома.

Название алкильных групп образуют от названия соответствующих алканов путем замены последних суффикса “ан” на суффикс “ил”.

СН 3 - метил

СН 3 СН 2 - этил

СН 3 СН 2 СН 2 - пропил

Для названия разветвленных алкильных групп используют также нумерацию цепи:

Начиная с этана, алканы способны образовывать конформеры, которым соответствует заторможенная конформация. Возможность перехода одной заторможенной конформации в другую через заслоненную определяется барьером вращения. Определение структуры, состава конформеров и барьеров вращения являются задачами конформационного анализа. Методы получения алканов.

1. Фракционная перегонка природного газа или бензиновой фракции нефти. Таким способом можно выделять индивидуальные алканы до 11 углеродных атомов.

2. Гидрирование угля. Процесс проводят в присутствии катализаторов (оксиды и сульфиды молибдена, вольфрама, никеля) при 450-470 о С и давлениях до 30 Мпа. Уголь и катализатор растирают в порошок и в суспензированном виде гидрируют, борботируя водород через суспензию. Получающиеся смеси алканов и циклоалканов используют в качестве моторного топлива.

3. Гидрирование СО и СО 2 .

СО + Н 2  алканы

СО 2 + Н 2  алканы

В качестве катализаторов этих реакций используют Со, Fe, и др. d - элементы.

4. Гидрирование алкенов и алкинов.

5. Металлоорганический синтез.

а). Синтез Вюрца.

2RHal + 2Na  R R + 2NaHal

Этот синтез малопригоден, если в качестве органических реагентов используют два разных галогеналкана.

б). Протолиз реактивов Гриньяра.

R Hal + Mg  RMgHal

RMgHal + HOH  RH + Mg(OH)Hal

в). Взаимодействие диалкилкупратов лития (LiR 2 Cu) с алкилгалогенидами

LiR 2 Cu + R X  R R + RCu + LiX

Сами диалкилкупраты лития получают двухстадийным способом

2R Li + CuI  LiR 2 Cu + LiI

6. Электролиз солей карбоновых кислот (синтез Кольбе).

2RCOONa + 2H 2 O  R R + 2CO 2 + 2NaOH + H 2 ­

7. Сплавление солей карбоновых кислот со щелочами.

Реакция используется для синтеза низших алканов.

8. Гидрогенолиз карбонильных соединений и галогеналканов.

а). Карбонильные соединения. Синтез Клемменса.

б). Галогеналканы. Каталитический гидрогенолиз.

В качестве катализаторов используют Ni, Pt, Pd.

в) Галогеналканы. Реагентное восстановление.

RHal + 2HI  RH + HHal + I 2

Химические свойства алканов.

Все связи в алканах малополярные, по этому для них характерны радикальные реакции. Отсутствие пи-связей делает невозможными реакции присоединения. Для алканов характерны реакции замещения, отщепления, горения.

Тип и название реакции

1. Реакции замещения

А) с галогенами хлором Cl 2 –на свету , Br 2 - при нагревании ) реакция подчиняется правилу Марковника (Правила Марковникова ) - в первую очередь галоген замещает водород у наименее гидрированного атома углерода. Реакция проходит поэтапно - за один этап замещается не более одного атома водорода.

Труднее всего реагирует иод, и притом реакция не идет до конца, так как, например, при взаимодействии метана с йодом образуется йодистый водород, реагирующий с йодистым метилом с образованием метана и йода(обратимая реакция):

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Б) Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова. Один из атомов водорода заменяется на остаток NO 2 (нитрогруппа) и выделяется вода

2. Реакции отщепления

А) дегидрирование –отщепление водорода. Условия реакции катализатор –платина и температура.

CH 3 - CH 3 → CH 2 = CH 2 + Н 2

Б) крекинг процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Нпри такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов

C 6 H 14 C 2 H 6 + C 4 H 8

В) полное термическое разложение

СН 4 C + 2H 2

3. Реакции окисления

А) реакция горения При поджигании (t = 600 o С) алканы вступают в реакцию с кислородом, при этом происходит их окисление до углекислого газа и воды.

С n Н 2n+2 + O 2 ––>CO 2 + H 2 O + Q

СН 4 + 2O 2 ––>CO 2 + 2H 2 O + Q

Б) Каталитическое окисление - при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–Спримерно в середине молекулы и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном окислении бутана (разрыв связи С 2 –С 3) получают уксусную кислоту

4. Реакции изомеризациих арактерны не для всех алканов. Обращается внимание на возможность превращения одних изомеров в другие, наличие катализаторов.

С 4 Н 10 C 4 H 10

5.. Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена).

Механиз реакции галогенирования:

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Галогенирование - это одна из реакций замещения. Галогенирование алканов подчиняется правилу Марковника (Правила Марковникова) - в первую очередь галогенируется наименее гидрированый атом углерода. Галогенирование алканов проходит поэтапно - за один этап галогенируется не более одного атома водорода.

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Под действием света молекула хлора распадается на атомы, затем они атакуют молекулы метана, отрывая у них атом водорода, в результате этого образуются метильные радикалы СН 3 , которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова.

RH + HNO 3 = RNO 2 + H 2 O

т. е. один из атомов водорода заменяется на остаток NO 2 (ни-трогруппа) и выделяется вода.

Особенности строения изомеров сильно отражаются на течении этой реакции, так как легче всего она ведет к замещению на нитрогруппу атома водорода в остатке СИ (имеющемся лишь в некоторых изомерах), менее легко замещается водород в группе СН 2 и еще труднее - в остатке СН 3 .

Парафины довольно легко нитруются в газовой фазе при 150-475° С двуокисью азота или парами азотной кислоты; при этом происходит частично и. окисление. Нитрованием метана получается почти исключительно нитрометан:

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов. Азотная кислота при обыкновенной температуре почти не действует на парафиновые углеводороды. При нагревании же действует главным образом как окислитель. Однако, как нашел М. И. Коновалов (1889), при нагревании азотная кислота действует отчасти и «нитрующим» образом; особенно хорошо идет реакция нитрования со слабой азотной кислотой при нагревании и повышенном давлении. Реакция нитрования выражается уравнением.

Последующие за метаном гомологи дают смесь различных нитропарафинов вследствие попутно идущего расщепления. При нитровании этана получаются нитроэтан СН 3 -СН 2 -NO 2 и нитрометан СН 3 -NO 2 . Из пропана образуется смесь нитропарафинов:

Нитрование парафинов в газовой фазе теперь осуществляется в промышленном масштабе.

Сульфахлорирование:

Важной в практическом отношении реакцией является сульфохлорирование алканов. При взаимодействии алкана с хлором и сернистым ангидридом при облучении происходит замещение водорода на хлорсульфонильную группу:

Стадии этой реакции:

Cl +R:H→R +HCl

R +SO 2 →RSO 2

RSO 2 + Cl:Cl→RSO 2 Cl+Cl

Алкансульфохлориды легко гидролизуются до алкансульфоксилост (RSO 2 OH),натриевые соли которых (RSO 3¯ Na + - алкансульфонат натрия) проявляют свойства,подобные мылам, и применяются в качестве детерагентов.