Презентация по физике на тему "электрический ток в металлах". Презентация на тему "электрический ток в металлах"" Электрический ток в металлах скачать презентацию

Класс: 11

Презентация к уроку





















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока :

Раскрыть понятие физической природы электрического тока в металлах, опытное подтверждение электронной теории;

Продолжить формирование естественно-научных представлений по изучаемой теме

Создать условия для формирования познавательного интереса, активности учащихся

Формированию навыков;

Формированию коммуникативного общения.

Оборудование: интерактивный комплекс SMART Board Notebook, локальная сеть компьютеров, интернет.

Метод ведения урока: комбинированный.

Эпиграф урока:

Науку все глубже постигнуть стремись,
Познанием вечного жаждой томись.
Лишь первых познаний блеснет тебе свет,
Узнаешь: предела для знания нет.

Фирдоуси
(Персидский и таджикский поэт, 940-1030 гг.)

План урока.

I. Оргмомент

II. Работа в группах

III. Обсуждение итогов, монтаж презентации

IV. Рефлексия

V. Домашнее задание

Ход урока

Здравствуйте, ребята! Садитесь. Сегодня наша работа будет проходить по группам.

Задания группам:

I. Физическая природа зарядов в металлах.

II. Опыт К.Рикке.

III. Опыт Стюарта, Толмена. Опыт Мандельштама, Папалекси.

IV. Теория Друде.

V. Вольт-амперная характеристика металлов. Закон Ома.

VI. Зависимость сопротивления проводников от температуры.

VII. Сверхпроводимость.

1. Электрическая проводимость представляет собой способность веществ проводить электрический ток под действием внешнего электрического поля.

По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:

А) электронную,

Б) ионную,

В) смешанную.

2. Для каждого вещества при заданных условиях характерна определенная зависимость силы тока от разности потенциалов.

По удельному сопротивлению вещества принято делить на:

А) проводники (p < 10 -2 Ом*м)

Б) диэлектрики (p > 10 -8 Ом*м)

В) полупроводники (10 -2 Ом*м> p>10 -8 Ом*м)

Однако такое деление условно, т. к. под воздействием ряда факторов (нагревания, облучения, примеси) удельное сопротивление веществ и их вольт - амперная характеристикаизменяются, и иногда очень существенно.

3. Носителями свободных зарядов в металлах являются электроны. Доказано классическими опытами К. Рикке (1901 г.) – немецкий физик; Л.И. Мандельштамом и Н. Д. Папалекси (1913 г.) – наши соотечественники; Т. Стюартом и Р. Толменом (1916 г.) – американские физики.

Опыт К. Рикке

Три предварительно взвешенных цилиндра (два медных и один алюминиевый) Рикке сложил отшлифованными торцами так, что алюминиевый оказался между медными. Затем цилиндры были включены в цепь постоянного тока: через них в течение года проходил большой ток. За то время через электрические цилиндры прошел электрический заряд, равный приблизительно 3.5 млн Кл. Вторичное взаимодействие цилиндров, проводившееся с до 0.03 мг, показало, что масса цилиндров в результате опыта не изменилась. При исследовании соприкасавшихся торцов под микроскопом было установлено, что имеются лишь незначительные следы проникновения металлов, которые не превышают результатов обычной диффузии атомов в твердых телах. Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют.

Л.И. Мандельштам

Н. . Папалекси

Опыт Л. И. Мандельштама и Н. Д. Папалекси

Русские ученые Л. И. Мандельштам (1879-1949; основатель школы радиофизиков) и Н. Д. Папалекси (1880-1947; крупнейший советский физик, академик, председатель Всесоюзного научного совета по радиофизике и радиотехнике при АН СССР) в 1913 году поставили оригинальный опыт. Взяли катушку с проводом и стали крутить ее в разные стороны.

Раскрутят, к примеру, по часовой стрелке, потом резко остановят и - назад.

Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток. Как задумали, так и получилось. Подсоединили к концам провода телефон и услышали звук. Раз в телефоне слышен звук, следовательно, через него ток протекает.

Т. Стюарт

Опыт Т. Стюарта и Р. Толмен

Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.

Теория Друде

Электроны в металле рассматриваются как электронный газ, к которому можно применить кинетическую теорию газов. Считается, что электроны, как и атомы газа в кинетической теории, представляют собой одинаковые твердые сферы, которые движутся по прямым линиям до тех пор, пока не столкнутся друг с другом. Предполагается, что продолжительность отдельного столкновения пренебрежимо мала, и что между молекулами не действует никаких иных сил, кроме возникающих в момент столкновения. Так как электрон - отрицательно заряженная частица, то для соблюдения условия электронейтральности в твердом теле также должны быть частицы другого сорта - положительно заряженные. Друде предположил, что компенсирующий положительный заряд принадлежит гораздо более тяжелым частицам (ионам), которые он считал неподвижными. Во времена Друде не было ясно, почему в металле существуют свободные электроны и положительно заряженные ионы, и что эти ионы из себя представляют. Ответы на эти вопросы смогла дать только квантовая теория твердого тела. Для многих веществ, однако, можно просто считать, что электронный газ составляют слабо связанные с ядром внешние валентные электроны, которые в металле "освобождаются" и получают возможность свободно передвигаться по металлу, тогда как атомные ядра с электронами внутренних оболочек (атомные остовы) остаются неизменными и играют роль неподвижных положительных ионов теории Друде.

Электрический ток в металлах

Все металлы являются проводниками электрического тока и состоят из пространственной кристаллической решетки, узлы которой совпадают с центрами положительных ионов, а вокруг ионов хаотически движутся свободные электроны.

Основные положения электронной теории проводимости металлов.

  1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 10 23 - 10 29 м -3 и почти не зависит от температуры.
  2. Свободные электроны в металлах находятся в непрерывном хаотическом движении.
  3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.
  4. Сталкиваясь с ионами, колеблющимися в узлах кристаллической решетки, электроны отдают им избыточную энергию. Вот почему при прохождении тока проводники нагреваются.

Электрический ток в металлах.

Сверхпроводимость

Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.

Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.

Сверхпроводящий материалы уже используются в электромагнитах. Ведутся исследования, направленные на создание сверхпроводящих линий электропередачи.

Применение явления сверхпроводимости в широкой практике может стать реальностью в ближайшие годы благодаря открытию в 1986 г. Сверхпроводимости керамик – соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.

Молодцы, ребята! С работой справились отлично. Получилась хорошая презентация. Спасибо за урок!

Литература.

  1. Горбушин Ш.А. Опорные конспекты для изучения физики за курс средней общеобразовательной школы. – Ижевск “Удмуртия”, 1992.
  2. Ланина И.Я. Формирование познавательных интересов учащихся на уроках физики: Книга для учителя. – М.: Просвещение, 1985.
  3. Урок физики в современной школе. Творческий поиск учителей: Книга для учителя /Сост. Э.М.Браверман/ Под редакцией В.Г. Разумовского.- М.: Просвещение, 1993
  4. Дигелев Ф.М. Из истории физики и жизни ее творцов: Книга для учащихся.- М.: Просвещение, 1986.
  5. Карцев В.Л. Приключения великих уравнений.- 3-е издание – М.: Знание, 1986. (Жизнь замечательных идей).

1 слайд

Электрический ток в металлах. Беляева Татьяна Васильевна МОУ «Высокоярская сош» Томская область

2 слайд

На рисунке 1 изображены условные обозначения, применяемые на схемах Каким номером обозначены…. I пересечение проводов?. II ключ? III электрический звонок? IV плавкий предохранитель? V соединение проводов? VI потребители электроэнергии?

3 слайд

Из каких частей состоит электрическая цепь, изображенная на рисунке? 1.Элемент, выключатель, лампа, провода. 2. Батарея элементов, звонок, выключатель, провода. 3. Батарея элементов, лампа, выключатель, провода.

4 слайд

Почему не горит исправная лампа в первой цепи при замыкании ключа? (Рис. 1) Почему не звенит звонок во второй цепи при замыкании цепи? (Рис. 2)

5 слайд

Где надо расположить источник тока, чтобы при замыкании ключа К1 зазвенел звонок, а при замыкании ключа К2 загорелась лампа? (Рис. 3)

6 слайд

Техника безопасности: При работе с электрическими цепями необходимо соблюдать правила по технике безопасности. Недопустимо касаться оголенных проводников, неисправных участков цепи и полюсов источника.

7 слайд

Как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением? Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд. Из каких материалов выполняется заземление? Заземление выполняют из металла. Почему предпочитают именно эти вещества, мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

8 слайд

Что называется металлом? Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

9 слайд

Вспомним строение металлов Модель металла - кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение.

10 слайд

Итак, в металле есть свободные электроны. Это является одним из условий существования электрического тока. Перечислите все условия необходимые для существования электрического тока?

11 слайд

Как же будут двигаться свободные электроны при наличии электрического поля? Электрический ток протекает по проводнику благодаря наличию в нем свободных электронов, сорвавшихся с атомных орбит

12 слайд

упорядоченное движение свободных электронов в металлах под действием электрического поля называется электрическим током в металлах. Как вы считаете, смещаются ли в металле другие частицы – ионы?

13 слайд

Опыт, проведенный немецким ученым физиком Рикке в 1901 году Проводники одинаковые по объему и форме два из меди и один из алюминия последовательно соединены. В течение одного года в цепи существовал электрический ток, характеристики которого не изменялись. Во время этого процесса степень интенсивности явления диффузии, которое происходит при соприкосновении металлов, была такой же, как и при отсутствии электрического тока в цепи. Таким образом, опыт подтвердил выводы теории: электрический ток в цепи не сопровождается переносом вещества, носителями электрического заряда в металлах являются свободные электроны.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ Презентация разработана преподавателем КС и ПТ Каракашевой И.В. Санкт – Петербург 2016

2 слайд

Описание слайда:

Цели урока: Образовательные: познакомить учащихся с проводимостью металлов и ее техническим использованием; раскрыть понятие физической природы электрического тока в металлах; продолжить формирование естественно-научных представлений по изучаемой теме; создать условия для формирования познавательного интереса; расширить научно-технический кругозор учащихся Развивающие: создать условия для развития коммуникативных навыков; создать условия для развития аналитических способностей учащихся, умения анализировать, сопоставлять, сравнивать, обобщать, делать выводы; создать условия для развития памяти, внимания, воображения Воспитательные: способствовать развитию умения отстаивать свою точку зрения; способствовать развитию культуры взаимоотношений при работе в коллективе

3 слайд

Описание слайда:

Что называется металлом? Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

4 слайд

Описание слайда:

В1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца (1904 г.) и носит название классической электронной теории. Она дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Пауль Друде Карл Людвиг - немецкий физик Хендрик Антон Лоренц- голландский физик Классическая электронная теория

5 слайд

Описание слайда:

Движение электронов подчиняется законам классической механики. Электроны друг с другом не взаимодействуют. Электроны взаимодействуют только с ионами кристаллической решётки, взаимодействие это сводится к соударению. В промежутках между соударениями электроны движутся свободно. Электроны проводимости образуют «электронный газ», подобно идеальному газу. «Электронный газ» подчиняется законам идеального газа. При любом соударении электрон передаёт всю накопленную энергию. Основные положения теории

6 слайд

Описание слайда:

Металл обладает кристаллической решеткой, в узлах которой находятся положительные ионы, колеблющихся около положения равновесия, и свободных электронов, способных перемещаться по всему объему проводника (электронный газ, подчиняющийся законам идеального газа) Строение металла

7 слайд

Описание слайда:

Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с. Строение металла В металле в отсутствие электрического поля электроны хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки.

8 слайд

Описание слайда:

Электрический ток в металлах Под действием электрического поля свободные электроны начинают упорядоченно перемещаться между ионами кристаллической решетки. Электрический ток протекает по проводнику благодаря наличию в нем свободных электронов, сорвавшихся с атомных орбит

9 слайд

Описание слайда:

Электрический ток в металлах Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. При протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда. Это было подтверждено в опытах немецкого физика Э.Рикке в 1901 году.

10 слайд

Описание слайда:

Опыты Э.Рикке В этих опытах электрический ток 0,1 А пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра. Общий заряд, прошедший за это время через цилиндры, превысил 3,5 МК. После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, не превышающие результатов обычной диффузии атомов в твёрдых телах. Измерения показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии.

11 слайд

Описание слайда:

Экспериментальное доказательство существования свободных электронов в металлах Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1913 г., результаты не были опубликованы), а также опытах Т. Стюарта и Р. Толмена (1916 г.). Л.И. Мандельштам 1879-1949 Н. Д. Папалекси 1880-1947 Т. Стюарт

12 слайд

Описание слайда:

Катушка, соединенная с телефоном, раскручивалась вокруг своей оси в разные стороны и резко тормозилась. Если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток, и телефон должен издавать звук. Раз в телефоне слышен звук, следовательно, через него ток протекает. Но никакие измерения и количественные расчеты в этих опытах не были произведены. Опыт Л.И.Мандельштама и Н.Д.Папалекси (1912 г.)

13 слайд

Описание слайда:

Опыт Т.Стюарта и Р.Толмена Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

14 слайд

Описание слайда:

Опыт Т.Стюарта и Р.Толмена Направление тока свидетельствовало о том, что он обусловлен движением отрицательно заряженных частиц. Измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным

15 слайд

Описание слайда:

Вольт – амперная характеристика металлов Электрический ток в металлах Носители заряда – электроны Проводимость – электронная Проводник, по которому течет ток, нагревается. Проводник, по которому течет ток, оказывает магнитное действие на окружающие тела.

16 слайд

Описание слайда:

Зависимость сопротивления проводника от температуры Сопротивление - это физическая величина, характеризующая способность проводника противодействовать установлению электрического тока в нем. Удельное сопротивление – это сопротивление цилиндрического проводника единичной длины и единичной площадью поперечного сечения. При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.

17 слайд

Описание слайда:

Зависимость сопротивления проводника от температуры Удельное сопротивление проводника зависит от температуры: где ро - удельное сопротивление при 0 градусов, t - температура, α - температурный коэффициент сопротивления

18 слайд

Описание слайда:

Зависимость сопротивления проводника от температуры Для металлических проводников с ростом температуры увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается электрический ток в цепи. Сопротивление проводника при изменении температуры можно рассчитать по формуле: R = Ro (1 + α t), где Ro - сопротивление проводника при 0 градусов Цельсия t - температура проводника α - температурный коэффициент сопротивления

19 слайд

Описание слайда:

Применение тока в металлах Передача электроэнергии от источника к потребителям В электродвигателях и генераторах В нагревательных приборах

20 слайд

Описание слайда:

Противоречия классической электронной теории Классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом. Эта теория не может объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная (закон Дюлонга и Пти). Наличие свободных электронов не сказывается на величине теплоемкости металлов. Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение в то время как из эксперимента получается зависимость ρ ~ T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

21 слайд

Описание слайда:

Сверхпроводимость Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. В 1911 г. нидерландский ученый Гейке Камерлинг-0ннес обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля. (1853- 1926) Гейке Камерлинг -0ннес, нидерландский ученый

22 слайд

Описание слайда:

Сверхпроводимость При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля. Это явление называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками. Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

23 слайд

Описание слайда:

Сверхпроводимость Г. Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах». В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. Самая низкая температура у вольфрама - 0,012 К, самая высокая у ниобия - 9 К. Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов и некоторых полупроводников. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtS и другие. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

24 слайд

Описание слайда:

Сверхпроводимость Первое теоретическое объяснение сверхпроводимости было дано в 1935 году братьями Фрицем и Хайнцем Лондоном. Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Однако эти теории не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов. Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа(которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы А. А. Абрикосова в 1950-е.

25 слайд

Описание слайда:

Сверхпроводимость В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя. В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок сопротивления практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O).

26 слайд

Описание слайда:

Сверхпроводимость В 1988 году было создано керамическое соединение (смесь оксидов таллия, кальция, бария и меди) с критической температурой 125 К. В 2003 году было открыто керамическое соединениюеHg-Ba-Ca-Cu-O(F), критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К. В 2015 году был установлен новый рекорд температуры, при которой достигается сверхпроводимость. Для H2S (сероводород) при давлении 100 ГПа был зафиксирован сверхпроводящий переход при температуре 203 К (-70°C).

27 слайд

Описание слайда:

Свойства сверхпроводников Так как сопротивление в сверхпроводимости отсутствует, то не происходит выделения тепла при прохождении через проводник электрического тока. Это свойство сверхпроводников широко используется. Для каждого сверхпроводника существует критическое значение силы тока, которое можно достигнуть в проводнике, не нарушая его сверхпроводимости. Это происходит потому, что при прохождении силы тока, вокруг проводника создается магнитное поле. А магнитное поле разрушает сверхпроводящее состояние. Поэтому сверхпроводники невозможно использовать для получения сколь угодно сильного магнитного поля. При прохождении энергии через сверхпроводник не происходит её потерь. Одним из направлений исследований современных физиков, является создание сверхпроводящих материалов при комнатных температурах.

28 слайд

Описание слайда:

Сверхпроводимость В настоящее время известно свыше 500 чистых элементов и сплавов, обнаруживающих свойство сверхпроводимости. По своему поведению в достаточно сильных магнитных полях они подразделяются на сверхпроводники 1-го и 2-го рода. Сверхпроводники I рода полностью вытесняют магнитное поле. К сверхпроводникам 1 рода относятся все элементы-сверхпроводники, кроме Nb и V, и некоторые сплавы.

29 слайд


ЧТО ПРЕДСТАВЛЯЕТ СОБОЙ ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ?

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.


ПРИРОДА ЭЛЕКТРИЧЕСКОГО ТОКА В МЕТАЛЛАХ

Электрический ток в металлических проводниках никаких изменений в этих проводниках, кроме их нагревания, не вызывает.

Концентрация электронов проводимости в металле очень велика: по порядку величины она равна числу атомов в единице объёма металла. Электроны в металлах находятся в непрерывном движении. Их беспорядочное движение напоминает движение молекул идеального газа. Это дало основание считать, что электроны в металлах образуют своеобразный электронный газ. Но скорость беспорядочного движения электронов в металле значительно больше скорости молекул в газе.


ОПЫТ Э.РИККЕ

Немецкий физик Карл Рикке провёл опыт, в котором электрический ток пропускал в течении года через три прижатых друг к другу, отшлифованных цилиндра - медный, алюминиевый и снова медный. После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.


Карл Виктор Эдуард Рикке


ОПЫТ Л.И. МАНДЕЛЬШТАМА И Н.Д. ПАПАЛЕКСИ

Русские ученые Л. И. Мандельштам и Н. Д. Папалекси в 1913 году поставили оригинальный опыт. Катушку с проводом стали крутить в разные стороны. Раскрутят, по часовой стрелке, потом резко остановят и - назад. Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Так и получилось. Подсоединили к концам провода телефон и услышали звук, а это означало что через него протекает ток.



Мандельштам Леонид Исаакович

Николай Дмитриевич Папалекси (1880-1947)


ОПЫТ Т.СТЮАРТА И Р.ТОЛМЕНА

Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт.

  • Катушка с большим числом витков тонкой проволоки приводили в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов присоединили к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Батлер Стюарт Томас

Ричард Чейз Толмен



КЛАССИЧЕСКАЯ ЭЛЕКТРОННАЯ ТЕОРИЯ

Предположение о том, что за электрический ток в металлах ответственны электроны, существовало и до проведения опыта Стюарта и Толмена. В 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал свою электронную теорию проводимости металлов, названную после классической электронной теорией . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом схожий с идеальным газом. Он заполняет пространство между ионами, образующими кристаллическую решетку металла

На рисунке показана траектория одного из свободных электронов в кристаллической решетке металла


ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ:

  • Наличие большого числа электронов в металлах способствует их хорошей проводимости.
  • Под действием внешнего электрического поля на беспорядочное движение электронов накладывается упорядоченное движение, т.е. возникает ток.
  • Сила электрического тока, идущего по металлическому проводнику, равна:
  • Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным.
  • При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Здесь соблюдается закон Джоуля-Ленца:

l = e * n * S * Ū д


СВЕРХПРОВОДИМОСТЬ МЕТАЛЛОВ И СПЛАВОВ

  • Некоторые металлы и сплавы обладают сверхпроводимостью, свойством обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).

Явление сверхпроводимости было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути (Т кр =4,2 о К).


ОБЛАСТЬ ПРИМЕНЕНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА:

  • получение сильных магнитных полей
  • передача электроэнергии от источника к потребителю
  • мощные электромагниты со сверхпроводящей обмоткой в генераторах, электродвигателях и ускорителях, в нагревательных приборах

В настоящее время в энергетике существует большая проблема, связанная с большими потерями при передаче электроэнергии по проводам.

Возможное решение проблемы:

Строительство дополнительных ЛЭП - замена проводов на большие поперечные сечения - повышение напряжения - расщепление фазы