История открытия закона всемирного тяготения - описание, особенности и интересные факты. Невесомость — интересные факты Сила всемирного тяготения интересные факты


Жители планеты Земля воспринимают силу тяжести, как что-то само собой разумеющееся. Известно, что Исаак Ньютон разработал теорию всемирного тяготения благодаря тому, что ему на голову упало яблоко с дерева. Но на самом деле земная гравитация – это нечто куда большее, чем плод, упавший с дерева. В нашем обзоре несколько любопытных фактов об этой силе.

1. Туалетная физика


На Земле люди хотят справить малую нужду, как только их мочевой пузырь заполнится на 1\3 от своего максимального объема. Происходит это из-за действия гравитации на каждого из нас. Именно поэтому космонавты находясь на МКС не испытывают нужды помочится до тех самых пор, пока их мочевой пузырь не будет переполнен.

2. Незатейливая колонизация

Гравитация является очень важным вопросом при колонизации других миров. В теории люди могут жить на планетах, сила гравитации которых отличается от Земной не более, чем в три раза. В противном случае будет нарушена подача крови в головной мозг.

3. Высота гор


В теории, гравитация определяет максимальную высоту формирующихся на планете возвышенностей. Так для Земли (опять-таки в теории) горы не могут превышать высоты в 15 километров.

4. Лунная физика


Во время исторической миссии «Аполлон», высадившиеся на поверхность Луны астронавты проверили там действие теории Галилея об ускорении свободного падения. Оказалось, что на луне предметы вне зависимости от их массы падают быстрее, чем на Земле. Причина тому заключается в отсутствии воздуха и как следствие – сопротивления.

5. Звезда-неудачник


Многие ученые считают Юпитер несостоявшейся звездой. Планета имеет достаточно сильное гравитационное поле для того, чтобы набрать нужную звезде массу, однако имеет недостаточно сильное поле для того, чтобы начать преобразовываться в еще одно светило.

6. Телепортация


Если взять и убрать Солце куда-нибудь за одно мгновение, то солнечная система будет еще некоторое время испытывать на себе действие его гравитационного поля. Для Земли, в теории, это «счастье» длилось бы около 8 минут, после чего небесные тела начали бы терять свои орбиты.

7. Горы на звездах


Если наше Солнце когда-нибудь превратиться в нейтронную звезду, то согласно расчётам ученых, гравитация на нем будет настолько мощной, что высота самой большой горы на его поверхности не смогла бы превысить 5 миллиметров.

8. Скорбное пение звезд


Действие гравитационного поля небесных тел после их исчезновения вовсе не сухая теория. Наша Солнечная система и наша родная планета постоянно испытывают действие гравитационного поля других звезд. Учитывая скорость распространения поля в пространстве, многие из этих звезд перестали существовать уже очень и очень давно.

9. Свечи в космосе


Если зажечь свечу в условиях отсутствия гравитационного поля, то ее огонь будет круглым. Более того, цвет пламени будет синим.

10. Газировка убивает


Пить газированные напитки в условиях отсутствия гравитации определенно точно не стоит. Почему? Все потому, что отсутствие силы тяжести полностью изменяет принцип распространения газов в организме человека. В лучшем случае это может спровоцировать приступ сильнейшей рвоты. Именно поэтому газировку не пьют астронавты на МКС.

Всем тем, кто интересуется наукой, интересно будет узнать и про .

Закон всемирного тяготения, который сформулирован Ньютон, гласит, что все предметы притягиваются друг к другу. Чем больше масса, тем заметнее сила притяжения. Благодаря силе притяжения мы имеем плотную атмосферу, поскольку земля притягивает атомы газов, из которых состоит воздух. Вес исчезает тогда, когда на тело не действует сила притяжения, либо когда оно находится в свободном падении. В обычных условиях человек может почувствовать себя в условиях невесомости в самолете, который с определенной скоростью пикирует к земле. В такой кратковременной невесомости тренируются космонавты, пикирующий самолет также иногда используется как аттракцион для людей, которые хотя почувствовать себя космонавтами. Представляем интересные факты о невесомости.

На борту космического корабля

  1. Можно перемещать предметы, которые в обычных условиях весят очень много.
  2. Космонавты спят в специальных прикрепленных к стене спальных мешках.
  3. В космическом корабле все предметы закреплены.
  4. Сила поверхностного натяжения делает из любого объема жидкости шарик. Жидкость нельзя налить в чашку, нельзя обычным способом помыть руки.
  5. Свеча не будет долго гореть, она быстро потухнет. В земных условиях воздух, в котором сгорел кислород, поднимается вверх, освобождая место для воздуха, насыщенного кислородом. В условиях невесомости кислород вокруг свечи выгорает и пламя постепенно угасает.
  6. В космическом корабле нужен вентилятор, который должен перемешивать воздух. Если космонавт не двигается, например спит, вокруг него скапливается углекислый газ, который в земных условиях опускается к земле, на его место приходит воздух, насыщенный кислородом. Так что если искусственным образом не перемешивать воздух в космическом корабле, космонавтам будет трудно дышать.
  7. В условиях невесомости можно получать химические вещества и материалы, которые нельзя получить на земле. Препятствием для экспериментов физиков и химиков в условиях невесомости является высокая стоимость доставки грузов на земную орбиту.
  8. На борту космического корабля были обнаружены явления, которые трудно было бы себе представить в земных условиях, например «эффект Джанибекова» — предмет, который вращается, через определенные отрезки времени меняет ось вращения на 180 градусов.

Человек

Нужно некоторое время, чтобы адаптироваться к условиям невесомости. Космонавты, которые провели некоторое время на орбите, хорошо приспосабливаются к необычным условиям, когда предметы движутся совсем не так, как на Земле. Но новички, попавшие на земную орбиту, некоторое время не могут справиться с обычными бытовыми проблемами (им трудно пить, есть, умываться). Но это является не столько проблемой, сколько поводом повеселиться, ведь полет на космическом корабле — это не только ежедневные трудности, но и веселый аттракцион. Влияние невесомости на человека:

  • потеря ориентации в пространстве, крутится голова, это происходит из-за того, что вестибулярный аппарат не может быстро приспособиться к новым условиям;
  • организм не может нормально распределить жидкость в орзанизме, может отечь лицо;
  • из-за отсутствии вертикальной нагрузке на хребет рост человека увеличивается от трех до пяти сантиметров;
  • космический корабль вокруг Земли летит очень быстро, поэтому Солнце восходит и садится 16 раз за сутки, это может отобразиться на состоянии организма, который привык к обычной смене дня и ночи;
  • так как жидкость превращается в шарики, которые повисают в воздухе, умывание проходит путем вытиранием влажными салфетками;
  • соль и перец жидкие, так как обычные приправы разлетаются по космическому кораблю;
  • при длительном нахождении в космосе ослабевают и могут атрофироваться мышцы, ослабевают кости, поэтому космонавты должны ежедневно тренироваться, в их одежду вшиты специальные эластичные ленты, которые заставляют космонавтов прикладывать усилия при движении.

Здесь, на Земле, мы воспринимаем силу тяжести как нечто само собой разумеющееся — , например, разработал теорию всемирного тяготения благодаря упавшему с дерева яблоку. Но гравитация, которая притягивает объекты друг к другу пропорционально их массе, — это уже нечто большее, чем упавший плод. Перед вами — несколько фактов об этой силе.

1. Всё — в вашей голове

Гравитация на Земле может быть силой довольно постоянной, но наше восприятие порой говорит нам, что это не так. В исследовании 2011-го года говорится, что люди лучше судят о том, как объекты падают на землю, когда сидят вертикально, а не когда, например, лежат на боку.

Это означает, что наше восприятие гравитации меньше основано на визуальных сигналах о направлении силы тяжести и больше зависит от ориентации тела в пространстве. Полученные результаты могут привести к новой стратегии и помочь астронавтам иметь дело с микрогравитацией в космосе.

2. Возвращаться на Землю трудно

Опыт астронавтов показывает, что переход к условиям невесомости и обратно может быть тяжёлым для тела, поскольку при отсутствии гравитации мышцы атрофируются, а кости теряют костную массу. По данным НАСА, астронавты могут потерять до 1% костной массы за месяц в космосе.

Когда астронавты возвращаются на Землю, их телам и мозгу требуется некоторое время для восстановления. Кровяное давление, в космосе распределяющееся равномерно по всему телу, должно снова адаптироваться к земным условиям, в которых сердце должно работать так, чтобы обеспечить приток крови к мозгу.

Иногда для этого астронавтам приходится прилагать значительные усилия: в 2006-м году астронавт Хайдемари Стефанишин-Пайпер упала прямо во время приветственной церемонии на следующий день после возвращения с МКС.

Психологическая адаптация может быть не менее сложной. В 1973-м году астронавт Джек Лоузма с космического корабля «Скайлэб-2» рассказал, что случайно разбил бутылку лосьона после бритья во время первых дней на Земле после месячного пребывания в космосе — он просто отпустил бутылку, забыв, что она упадёт и разобьётся, а не начнёт плавать в пространстве.

3. Для потери веса используйте Плутон

Плутон — не просто планета, это ещё и хороший способ похудеть: человек, вес которого на земле составляет 68 кг, на карликовой планете будет весить не больше 4,5 кг. Противоположный эффект возникнет на Юпитере — там тот же человек будет весить 160,5 кг.

Планета, которую человечество, скорее всего, в ближайшее время посетит, Марс, тоже порадует исследователей ощущением лёгкости: гравитация Марса составляет всего 38% от земной, а это означает, что наш человек весом 68 кг там «похудеет» до 26-ти кг.

4. Гравитация неодинакова даже на Земле

Даже на Земле гравитация не всегда одинакова, поскольку наша планета на самом деле не является идеальной сферой, то и масса её распределена неравномерно, а неравномерная масса означает неравномерную силу тяжести.

Одна из таинственных гравитационных аномалий наблюдается в районе Гудзонова залива в Канаде. Эта область имеет более низкую плотность по сравнению с другими регионами планеты, а исследование 2007-го года показало, что причина тому — в постепенном таянии ледников.

Лёд, который покрывал эту область во время последнего ледникового периода, уже давно растаял, но Земля не полностью восстановилась после этого. Так как сила тяжести на площади пропорциональна массе на поверхности этого региона, то лёд в своё время «подвинул» часть массы Земли. Незначительная деформация земной коры наряду с движением магмы в мантии Земли также объясняет снижение гравитации.

5. Без гравитации некоторые бактерии стали бы смертоноснее

Сальмонеллы — бактерии, обычно становящиеся причиной пищевых отравлений — в условиях микрогравитации становятся в три раза опаснее. Отсутствие гравитации по каким-то причинам изменило активность, по меньшей мере, 167-ми генов сальмонеллы и 73-х их белков. Мыши, которых намеренно кормили в невесомости заражённой сальмонеллой пищей, заболели намного быстрее, хотя бактерий поглотили меньше по сравнению с условиями на Земле.

6. Чёрные дыры в центрах галактик

Названные так потому, что ничто, даже свет, не может избежать попадания в их гравитационное поле, чёрные дыры являются едва ли не самыми разрушительными объектами во Вселенной. В центре нашей галактики находится массивная черная дыра с массой в три млн солнц, однако, согласно теории учёного из Китайского университета Тацуя Инуи, эта чёрная дыра не представляет для нас опасности — она находится слишком далеко и по сравнению с другими чёрными дырами наша Стрелец-А сравнительно небольшая.

Но иногда она устраивает шоу: в 2008-м году Земли достигла вспышка энергии, излучённой около 300-т лет назад, а несколько тыс лет назад небольшое количество вещества (сопоставимое по массе с Меркурием) упало в чёрную дыру, что повлекло за собой другую вспышку.

Сила всемирного тяготения является неотъемлемой частью нашей жизни, хоть и мы воспринимаем это как что-то обыденное. И. Ньютон, благодаря упавшему яблоку ему на голову, разработал эту теорию, однако гравитация – это нечто большее.
До Ньютона такие ученые, как Кеплер, Декарт, Эпикур и другие, так же философствовали о существовании подобной силы. Но, по большому счету, они считали, что есть два притяжения: небесное (в космосе) и земное (на поверхности планеты). Исаак Ньютон пошел немного дальше, он связал между собой эти два понятия. К тому же, легенда о том, что он гулял по саду и на него упало яблоко, на самом деле выдумка и просто красивая история.

Гравитация – это сила притяжения между объектами пропорционально их массе. Оби-Ван Кеноби во всемирно известном фильме упоминал, что «сила – она вокруг нас и проникает в нас. Она скрепляет Галактику». Однако если добро и зло действует по дуальному принципу, то сила притяжения только притягивает предметы друг к другу, но не отталкивает их. Гравитация она вокруг нас. Это сила, которая держит планету в форме сферы, она не дает нам оторваться от поверхности. А еще гравитация держит нашу атмосферу вокруг себя и не дает ей парить в космосе. Ниже представлены несколько интереснейших фактах о силе всемирного тяготения.

Многие считают, что астронавты на космической станции и любители экстремальных развлечений на скорости, испытывают «нулевую» силу притяжения, т.е. некоторое время они неподвластны гравитации вовсе. На самом деле это в корне неверное утверждение, т.к. они стремятся вниз с такой же скоростью, что и предмет, в котором находятся.

Сила всемирного тяготения действует одинаково на все предметы, несмотря на их вес. К примеру, если сбросить с высоты два одинаковых по параметрам шлакоблока, но разных по весу, то дотронутся до поверхности земли они вместе. Дополнительная скорость предмета, который легче по своей массе, перекрывается инертность более тяжеловесного предмета.

Оказывается, что чем больше вес космического тела, тем тяжелее предметы, находящиеся на ней. Это значит, что один и тот же человек, который имеет вес в пятьдесят килограммов на нашей планете, на Сатурне бы весил в 2 раза больше.
Сила тяжести на планете определяется ее размерами. Например, на Марсе сила притяжения намного меньше, нежели на нашей планете. Этот факт негативно влияет на человеческий организм, поэтому человек не может находиться длительное время на этой планете.
Юпитер – не планета, и не звезда. Он имеет достаточную силу гравитации, что бы набрать нужный вес и стать полноценной звездой, небесным светилом, но его поле слишком слабое и не может запустить процесс преображения планеты.

Интересный факт! В отсутствие силы земного притяжения, т.е. в состоянии невесомости, все жидкости принимают форму шара. У Вас не получится помыть руки или перелить воду из сосуда в сосуд. Поэтому для того, что бы комфортно себя чувствовать в космосе, космонавты к этому долго привыкают. Даже сон для них непривычный, т.к. спят они в мешках, которые прикреплены к стенам корабля. К тому же, и со сном у астронавтов тяжелее, ведь фазы сна и бодрствования человека зависят от закатов и рассветов, а в космосе между этими двумя процессами проходит всего лишь 90 минут, т.е. в сутках наблюдается 8 циклов.

Многие думают, что в космосе нет силы гравитации. На самом деле это неверное утверждение. Сила гравитации есть практически везде, но она действует с разной силой. Как известно, сила гравитации между 2 телами обратно пропорциональна расстоянию между ними и соразмерно произведению их веса. Из-за того, что земной радиус немногим меньше, чем высота орбиты международной космической станции (приблизительно на 10 процентов), поэтому и сила притяжения там меньше и стремится она к нулю.

Пламя в отсутствие силы притяжения так же ведет себя иначе, чем мы привыкли. Все потому, что на Земле при горении воздух, насыщенный углекислым газом, поднимается, в то время, освобождая место для поступления кислорода. В условии невесомости такой смены воздуха нет, поэтому со временем весь кислород вокруг огня сгорает, и процесс горения прекращается. Из-за отсутствия конвекции воздуха в космосе страдает не только пламя, но и человек, потому как во время его неподвижности кислород также не циркулирует вокруг и заканчивается. Для таких ситуаций в отсеках космических кораблей предусмотрены вентиляторы для искусственной циркуляции воздуха.

По теории ученых, именно сила притяжения играет роль в определении высоты гор на Земле. Таким образом, для нашей планеты максимальной высотой гор будет расстояние не более, чем в 15 километров. К примеру, если бы Солнце стало нейронным светилом, то его мощная гравитация не дала бы появиться такому явлению, как горы, в принципе.

Оказывается, что сила гравитации в центре Земли действовала бы на предметы (если была бы возможность их там разместить) не так, как на поверхности планеты. В ядре планеты предметы тянуло бы одновременно по все четыре стороны, что, в принципе, аналогично ситуации в состоянии невесомости.

Гравитация действует не только на предметы, но и влияет на многие расчеты и факторы. Оказывается, что ее потенциал имеет значительное влияние на отсчет времени. Сравнительно недавно физики из Дании доказали, что центр нашей планеты моложе своей поверхности. Чем ниже гравитация, тем медленнее время. По гипотетическим измерениям возраст ядра и коры небесных тел значительно отличаются между собой в пользу их центра.

Все мы знаем, и ранее упоминали, что наличие самой силы на Земле открыл ученый Ньютон в 17 веке. Но мало кто знает, что на самом деле он описал лишь часть этой силы. Многие годы ученые пытались усовершенствовать эту теорию. Другой известный гений заявил, что сила тяготения – всего лишь искривление времени-пространства, создаваемое массой этого объекта. Этим ученым был Эйнштейн, и только лишь в 20 веке он стал ближе к разгадке этого явления. Но на самом деле гравитация хранит в себе еще много тайн, которые нам не подвластны на данный момент и в будущем предстоит еще разгадать.

Не смотря на то, что гравитация - это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация - это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый - Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле - тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле - это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле - тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна - термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация - это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей - Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.