Применение ядерного оружия против гражданского населения. Ядерная угроза: чего бояться, поражающие факторы Ядерное оружие проблема человечества

    Средства применения ядерного оружия. Общее устройство и

характеристика ядерных боеприпасов.

Как было рассмотрено ранее, ядерное оружие включает ядерные боеприпасы, средства управления и средства доставки к цели (носители).

К ядерным боеприпасам относятся боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины, фугасы.

Мощность зарядов и боеприпасов принято характеризовать тротиловым эквивалентом – такой массой тротила, энергия взрыва которого равна энергии, выделяющейся при воздушном взрыве ядерного заряда. Тротиловый эквивалент принято выражать в тоннах.

Современные боеприпасы могут иметь мощность взрыва q от нескольких десятков тонн до десятков миллионов тонн.

По мощности взрыва ядерные заряды и боеприпасы условно делятся на 5 диапазонов (калибров):

Сверхмалый (q ‹ 1 тыс. тонн)

Малый (1 q ‹ 10 тыс. тонн)

Средний (10 q ‹ 100 тыс. тонн)

Крупный (100 q ‹ 1000 тыс. тонн)

Сверхкрупный (q ≥ 1 млн. тонн)

Ядерные заряды и боеприпасы отличаются друг от друга не только мощностью, но и характером поражающего действия. В частности, для термоядерных боеприпасов важнейшей характеристикой является коэффициент термоядерности – отношение количества энергии, выделившейся за счёт реакции синтеза, к общему количеству энергии взрыва данной мощности. С увеличением коэффициента термоядерности уменьшается выход радиоактивных продуктов на единицу мощности и, таким образом, повышается «чистота» взрыва, уменьшаются масштабы радиоактивного заражения.

Основными частями ядерного боеприпаса являются: ядерное зарядное устройство (заряд), блок подрыва с предохранителями и источниками питания и корпус боеприпаса. (Слайд № 1.)

К
орпус предназначен для размещения ядерного заряда и системы автоматики, а также для предохранения их от тепловых повреждений, для придания боеприпасу баллистической формы и для стыковки боеприпаса с носителем. Конструкция корпуса зависит от типа носителя. Так, например, основные части баллистических ракет имеют корпуса конической или цилиндрической формы с теплозащитным покрытием. Корпуса боевых зарядных отделений торпед, боевых частей крылатых и зенитных ракет представляют собой тонкостенную ампулу, размещаемую внутри носителя.

Система автоматики обеспечивает взрыв ядерного заряда в заданный момент времени и исключает его случайное или преждевременное срабатывание. Она включает:

Источники питания

Систему датчиков подрыва

Систему подрыва заряда

Систему аварийного подрыва

Система автоматики обеспечивает взрыв ядерного заряда в заданный момент времени и исключает его случайное или преждевременное срабатывание. Она включает:

Источники питания

Систему предохранения и взведения

Систему датчиков подрыва

Систему подрыва заряда

Систему аварийного подрыва

Система предохранения и взведения обеспечивает безопасность при эксплуатации боеприпаса, исключает преждевременный взрыв его при боевом применении и служит для взведения устройства системы автоматики.

Система датчиков подрыва предназначена для формирования исполнительной команды на взрыв заряда при достижении боеприпасом цели. Она обычно состоит из системы датчиков ударных и системы датчиков неконтактного подрыва. Ударные (контактные) датчики срабатывают при встрече боеприпаса с преградой. Датчики неконтактного подрыва срабатывают на заданной высоте (расстоянии) от цели.

Система подрыва заряда обеспечивает срабатывание заряда по команде, поступающей от датчиков подрыва. Она состоит из блока формирования электрического импульса для подрыва электродетонаторов обычного взрывчатого вещества и системы нейтронного инициирования реакции деления. Система нейтронного инициирования в составе системы подрыва заряда может отсутствовать. В этом случае цепная ядерная реакция деления инициируется нейтронными источниками, расположенными в самом заряде.

Система аварийного подрыва в некоторых боеприпасах может отсутствовать.

Главная составная часть ядерного боеприпаса – ядерное зарядное устройство (ядерный заряд). В составе ядерного заряда находится ядерное взрывчатое вещество (ЯВВ).

    Атомные заряды.

Вследствие самопроизвольного деления ядер урана или плутония, наличия блуждающих нейтронов в атмосфере и других факторов нельзя принять никаких мер, препятствующих цепной реакции в ЯВВ, имеющем надкритическую массу (К рр › 1). Следовательно, до взрыва общее количество ЯВВ в одном боеприпасе должно разделяться на отдельные части, каждая из которых имеет 5 асссу меньше критической (К рр ‹ 1). Для взрыва необходимо соединить в единое целое такое количество делящегося вещества, которое создаст надкритическую массу.

По принципу перевода делящегося вещества в надкритическое состояние атомные заряды разделяются на заряды пушечного и имплозивного типов.

2.1. Ядерные заряды «пушечного типа»

В зарядах «пушечного типа» две или больше частей делящегося вещества соединяются друг с другом в надкритическую массу в результате взрыва обычного взрывчатого вещества за счёт выстрела одной частью заряда в другую, закреплённую в противоположном конце прочного металлического цилиндра, напоминающего орудийный ствол.

Слайд № 2

Достоинством схемы пушечного типа является возможность создания зарядов сравнительно малого диаметра и высокой стойкостью к воздействию механических нагрузок, что позволяет использовать их в артиллерийских снарядах и минах.

Недостатком такой схемы является трудность обеспечения высокой надкритичности, вследствие чего коэффициент полезного использования его невелик.

2.2. Ядерные заряды имплозивного типа.

В зарядах имплозивного типа делящееся вещество переводится в надкритическое состояние повышением его плотности в результате всестороннего обжатия с помощью взрыва обычного взрывчатого вещества, поскольку критическая масса обратно пропорциональна квадрату плотности вещества.

Слайд №3.

З

а счёт инерции ЯВВ и прочной оболочки ядерный заряд удерживается некоторое время в надкритическом состоянии, вследствие чего успевает разделиться определённое число ядер делящегося вещества.

Достоинством зарядов имплозивного типа является возможность получения высокой степени надкритичности и, следовательно, высокий коэффициент полезного использования вещества.

2.3. Термоядерные заряды.

Основными элементами термоядерного заряда является термоядерное горючее и атомный заряд – инициатор реакции синтеза.

Слайд № 4



Схема устройства термоядерного боеприпаса типа «деление-синтез»

1.- ядерный детонатор (заряд деления); 2.- заряд для реакции синтеза (дейтерид лития); 3.- корпус

На предыдущем занятии в качестве наиболее значимой реакции получения ядерной энергии нами рассмотрена реакция соединения Д и Т :

Д + Т → 2 Не + n + 17,6 МэВ (1)

В связи с тем, что дейтерий и тритий в свободном состоянии представляют собой газы, а тритий, кроме того, является радиоактивным и дорогостоящим изотопом, в качестве первичного термоядерного горючего обычно используют дейтерид лития – твёрдое вещество, представляющее собой соединение дейтерия и изотопа лития 3 Li .

При облучении лития – 6 нейтронами, возникающими при взрыве атомного заряда (инициатора реакции синтеза), образуется тритий:

3 Li + n → Т + 2 Не + 4,8 МэВ (2)

Образующийся тритий вступает в реакцию с дейтерием (1) и выделяется основное количество энергии.

Образующиеся в реакции (1) нейтроны вновь приводят к образованию трития (2), т. е. к поддержанию реакции синтеза.

Рассматривая на предыдущем занятии реакцию синтеза, мы обратили внимание на испускание нейтронов высокой энергии. Эти нейтроны способны вызывать деление ядер изотопа урана U-238 . Изотоп U-238 является наиболее дешёвым и распространённым - в природной смеси урана содержится более 99,98 %. Поэтому для увеличения энергии взрыва в термоядерных зарядах используют оболочки из U-238 . Деление ядер U-238 будет являться третьей фазой взрыва. Поэтому такие боеприпасы, основанные на принципе «деление – синтез – деление», называют трёхфазными или комбинированными.

2. Виды ядерных взрывов и их характеристика.

В зависимости от способов применения и задач, решаемых применением ядерного оружия, вида и места нахождения объектов поражения, а также в зависимости от свойств окружающей зону взрыва среды, ядерные взрывы разделяют на воздушные, высотные, наземные (надводные) и подземные (подводные).

Воздушными ядерными взрывами называются взрывы, для которых средой, окружающей зону взрыва, является воздух. К воздушным взрывам относятся взрывы в атмосфере на высотах:

3,5 3 √q ≤ H ≤ 10 000 м , где

q – мощность взрыва, т

Различают два основных вида воздушных взрывов:

Низкий взрыв

3,5 3 √q ≤ H ≤ 10 3 √q

Высокий взрыв

H ≥ 10 3 √q

Наземными ядерными взрывами называются взрывы на поверхности земли (контактные) и взрывы в воздухе на высотах H ‹ 3,5 3 √q.

Высотными ядерными взрывами называются взрывы, для которых средой, окружающей зону взрыва, является разрежённый воздух. К таким взрывам относят взрывы на высотах более 10 км.

Высотные ядерные взрывы подразделяются на стратосферные
(10 000 м ‹ H ‹ 80 000 м ) и космические (H › 80 000 м ).

К надводным ядерным взрывам относят контактные взрывы (на поверхности воды) и взрывы в воздухе на высотах H ‹ 3,5 3 √q .

К подводным и подземным взрывам относят взрывы, для которых средой, окружающей зону реакции, является вода и, соответственно, грунт.

На данном занятии наиболее подробно рассмотрим воздушный и наземный ядерный взрывы, поскольку именно они наиболее характерны для применения в общевойсковом бою и операции и обладают наибольшей реализуемостью и многообразием поражающих факторов.

2.1. Воздушный взрыв

Воздушными ядерными взрывами называются взрывы, для которых средой, окружающей зону взрыва, является воздух. Практически к воздушным относятся взрывы в атмосфере на высотах: 3,5 3  q  H  10 000 м, где q мощность взрыва, т.

Низкие воздушные взрывы предназначаются для поражения личного состава и разрушения сравнительно прочных объектов боевой техники и наземных сооружений. При этом радиоактивное заражение местности практически не будет влиять на боевые действия войск.

Высокие воздушные взрывы используются для разрушения малопрочных наземных объектов и поражения личного состава, расположенного в них или открыто на местности, при этом площади поражения будут больше, чем при низких воздушных взрывах. Так же высокие воздушные взрывы применяются в тех случаях, когда по условиям обстановки радиоактивное заражение местности недопустимо.

Физические процессы, сопровождающие воздушные ядерные взрывы, обусловливаются взаимодействием проникающей радиации, рентгеновского излучения и газового потока с воздухом.

Проникающая радиация и рентгеновское излучение, выходящие из зоны реакции, вызывают возбуждение и ионизацию атомов и молекул окружающего воздуха. Возбужденные атомы и молекулы при переходе в основное состояние испускают кванты света, в результате чего возникает так называемая область начального свечения воздуха. Это свечение носит люминесцентный характер (свечение холодного воздуха). Его длительность не зависит от мощности взрыва и составляет приблизительно десять микросекунд, а радиус области начального свечения воздуха равен примерно 300 м.

В результате взаимодействия гамма-излучения с атомами воздуха образуются высокоэнергетические электроны, движущиеся преимущественно по направлению движения γ-квантов, и тяжелые положительные ионы, практически остающиеся на месте. Вследствие такого разделения положительных и отрицательных зарядов возникают электрические и магнитные поля - электромагнитный импульс (ЭМИ), который проявляет себя как поражающий фактор ядерного взрыва.

Одновременно с ионизацией прилегающего к зоне реакции воздуха происходит его прогрев рентгеновским излучением. В результате этого начинается формирование светящейся области, представляющей собой плазменное образование нагретых до высоких температур воздуха и паров материалов конструкции боеприпаса (продуктов взрыва).

За время существования светящейся области температура внутри ее изменяется от миллионов до нескольких тысяч кельвинов.

Форма светящейся области зависит от высоты взрыва. При высоком воздушном взрыве она близка к сфере. Светящаяся область низкого воздушного взрыва в результате деформации ударной волной, отраженной от поверхности земли, имеет вид сферического сегмента.

Время свечения и диаметр светящейся области зависят от мощности взрыва.

Световое излучение ядерного взрыва по своей природе является в основном тепловым и проявляет себя как мощный поражающий фактор.

При атомном и обычном термоядерном взрывах в воздухе в световое излучение трансформируется около 35 % их энергии.

По мере остывания светящейся области ее свечение прекращается, пары конденсируются, она превращается в облако взрыва, представляющее собой клубящуюся массу воздуха, перемешанную с отвердевшими частицами продуктов взрыва, окислами азота воздуха, каплями воды и частицами грунтовой пыли.

Высокая температура внутри охваченной тепловой волной области в тонком наружном слое резко уменьшается до температуры окружающего холодного воздуха. Такой перепад температуры обусловливает возникновение около фронта тепловой волны больших градиентов давления. На границе области, охваченной тепловой волной, накапливаются гидродинамические возмущения, вследствие чего внутри светящейся области зарождается ударная волна, которая представляет собой резкое сжатие среды, распространяющееся со сверхзвуковой скоростью.

Некоторое время ударная волна распространяется внутри светящейся области, так как скорость лучистого прогрева, которая определяет движение границы светящейся области, больше, чем скорость ударной волны. По мере охлаждения светящейся области скорость распространения тепловой волны уменьшается быстрее, чем скорость распространения ударной волны. При температуре 300 тыс. К, они становятся равными, а при температуре меньшей 300 тыс. К скорость ударной волны становится больше скорости тепловой волны и ее передняя граница (фронт) выходит вперед.

Воздушная ударная волна является одним из основных поражающих факторов ядерного взрыва.

В воздушную ударную волну трансформируется примерно 50 % энергии воздушного взрыва атомного и обычного термоядерного заряда.

Образовавшееся в результате увеличения и охлаждения светящейся области облако взрыва вначале имеет красный или красновато-коричневый цвет, затем по мере увеличения количества капель воды, он становится белым.

Максимальная высота подъема облака при ядерных взрывах средней мощности 8-12 км. На этой высоте горизонтальный размер облака достигает 5-9 км. Облако сверхкрупного термоядерного взрыва может подняться в стратосферу на высоту 25 км, горизонтальный размер в этом случае может достигнуть десятков километров.

Облако взрыва радиоактивно. При подъеме и после стабилизации высоты подъема облако под действием воздушных течений переносится на большее расстояние и рассеивается. Во время движения облака содержащиеся в нем радиоактивные продукты, смешавшись с пылью и каплями воды, постепенно выпадают и вызывают радиоактивное заражение атмосферы и местности.

В результате воздействия на грунт светового излучения, ударной волны и воздушных потоков, следующих за ней, а также воздушных потоков, появляющихся вследствие подъема сначала светящейся области, а затем облака взрыва, образуется приземный запыленный слой атмосферы. Приземный запыленный слой существует десятки минут.

Его максимальный диаметр зависит от мощности и высоты взрыва, свойств грунта, характера местности и растительного покрова в районе эпицентра взрыва.

Одновременно с приземным запыленным слоем атмосферы вследствие всасывающего эффекта, возникающего в районе эпицентра взрыва в результате подъема сначала светящейся области, а затем облака взрыва, а также конвективного теплообмена воздуха с неравномерно нагретой световым излучением поверхностью земли, образуется пылевой столб - восходящий поток воздуха с частицами грунта.

Пылевой столб имеет темно-коричневый цвет - цвет грунта в районе эпицентра взрыва.

При взрыве на высоте H  3 q м пылевой столб догоняет облако и соединяется с ним. В этом случае в облако взрыва вносятся грунтовые частицы, оно приобретает коричневый цвет.

Если H  3 q , пылевой столб не соединяется с облаком взрыва и оно практически не содержит грунтовых частиц.

Пылевые образования (приземный запыленный слой атмосферы и пылевой столб) могут оказывать аэродинамическое, тепловое и эрозионное (абразивное) действие на летательные аппараты, затруднять работу радиолокационных станций, выводить из строя фильтровентиляционные системы. Поэтому пылевые образования рассматривают как поражающий фактор ядерного взрыва.

К концу своего развития внешняя картина воздушного ядерного взрыва приобретает грибовидный вид.

Таким образом, поражающими факторами воздушного ядерного взрыва являются: воздушная ударная волна, световое излучение, проникающая радиация, электромагнитный импульс, облако взрыва, ионизация и радиоактивное заражение атмосферы. Кроме того, при воздушном взрыве над сушей могут возникать пылевые образования, слабое радиоактивное заражение местности, а также слабые механические колебания грунта (сейсмовзрывные волны), образующиеся в результате воздействия на него воздушной ударной волны.

2.2. Наземный взрыв

К наземным ядерным взрывам относят взрывы на поверхности земли (контактные) и взрывы в воздухе на высотах Н < 3,5 3 q , при которых светящаяся область касается поверхности земли.

Наземные взрывы применяются как для поражения различных объектов в районе взрыва, так и для поражения личного состава, действующего в зонах радиоактивного заражения.

В воздушной среде при наземных ядерных взрывах происходят те же процессы, что и при воздушных. Отличие наземных ядерных взрывов от воздушных состоит, главным образом, в том, что при наземных взрывах светящаяся область в момент возникновения имеет вид усеченной сферы (контактного - полусферы), радиус которой больше радиуса сферы светящейся области воздушных взрывов той же мощности, среда внутри светящейся области в приземной ее части содержит большое количество частиц грунта, температура внутри светящейся области несколько меньше, чем при воздушных взрывах, пылевой столб соединяется с облаком взрыва в стадии его формирования, облако взрыва гораздо больше загрязнено частицами грунта.

Образование воронки при наземных взрывах обусловливается испарением, плавлением, выбросом и вдавливанием грунта в массив: возникновение навала грунта - выбросом и выдавливанием грунта из воронки.

Сейсмовзрывные волны при наземных взрывах возникают в результате непосредственной передачи энергии взрыва грунту и воздействия воздушной ударной волны на грунт.

Образование воронки и интенсивность сейсмовзрывных волн существенно зависят от высоты взрыва. Воронка образуется только при взрывах на высотах Н < 0,5 3 q . Интенсивные сейсмовзрывные волны возникают при взрывах на высотах меньше Н < 0,3 3 q .

К концу своего развития наземные ядерные взрывы, как и воздушные, приобретают грибовидный вид. Отличие внешнего вида наземных взрывов от воздушных состоит в том, что при наземных взрывах наблюдаются более мощные приземный запыленный слой атмосферы и пылевой столб, а также более темная окраска облака взрыва, которая обусловливается загрязнением большим количеством частиц грунта.

Ядерное оружие . Воздействие оружия массового пораженияРеферат >>

Урана значительно повышает общее энерговыделение устройства . Одним из... непосредственного применения химического оружия . Химические боеприпасы различают по следующим характеристикам : ... В тоже время ядерное оружие является надежным средством защиты от нападения...

  • Современные средства поражения и их поражающие факторы. Способы защиты населения

    Контрольная работа >> Безопасность жизнедеятельности

    Как государства, а обычные средства окажутся неэффективными. 1.1. Характеристика ядерного оружия . Виды взрывов. Ядерное оружие – это один из...

  • Понятие ядерного оружия как орудия массового поражения

    Реферат >> Безопасность жизнедеятельности

    Варварского средства уничтожения людей, всегда неизменным оставался принцип - откровенный ядерный шантаж и угроза применения ядерного оружия ... «О чем звенит колокол», А.И. Иойрыш,1991г. «Характеристики ядерного оружия» (The Effects of Nuclear Weapon ...

  • Чрезвычайные ситуации военного времени. Характеристика и методы применения оружия массового пора

    Реферат >> Безопасность жизнедеятельности

    1200oС. Средствами применения зажигательного оружия могут быть авиационные бомбы, кассеты, артиллерийские зажигательные боеприпасы , мины...

  • Ядерное оружие применяется в контексте быстрого достижения результата. Однако не многие понимают, какие долговременные последствия может иметь такой неосторожный шаг со стороны человечества.

    Ядерное оружие — огромная опасность для человечества

    Всё дело в том, что после ядерного удара наступит так называемый эффект «ядерной зимы», когда климатические условия сильно ухудшатся.

    Средство для самоуничтожения

    Мы уже почти 50 лет назад изобрели средство для самоуничтожения под названием ядерная бомба. Однако мощнейший ледниковый период, который наступит после её применения, ранее почти не изучали. Впервые про это заговорили в 80-ых годах, когда тогдашняя компьютерная техника смогла дать минимально приближённый прогноз на подобное событие. Моделирование показало, что после взрыва огромные территории охватят сильнейшие пожары, которые спровоцируют миллионы тон пыли и сажи в воздухе.

    Из-за подобных изменений температура на поверхности Земли упадёт в среднем на 25 градусов и будет сохраняться в десятки месяцев. Это может спровоцировать гибель огромного количества растений и животных на планете со всеми вытекающими последствиями.

    Однако прогноз тридцатилетней давности был очень далёк от совершенства. Кроме климатической составляющей, он не учитывал радиацию, электромагнитные колебания и разрушение озоновой составляющей планеты. Кроме этого, более современные компьютерные модели взрыва показывают, что климатический эффект, предусмотренный в 1983 году был, по меньшей мере, очень оптимистичным.

    Ледниковый период

    При вводе в систему расчёта параметров изменения состава атмосферы, воздействия океана и сезонных изменений климата, была рассчитана реакция от попадания в воздух около 150 мегатонн дымовой составляющей. Это эквивалентно использования около 30% мировых ядерных оружий.

    Кроме огромного количества различных частиц, которые в прямом смысле слова заслонят солнце, движение воздушных масс полностью поменяются. Количество осадков уменьшиться, по меньшей мере, в несколько раз. В сочетании с глобальным распространением канцерогенных и радиоактивных веществ это будет катастрофой планетарного масштаба.

    Падение температуры в некоторых местах достигнет отметки в 35 градусов. Даже через 12 лет после взрыва среднегодовая температура была меньше нормальной на 3 градуса. А если взять в расчёт тот факт, что во время последнего ледникового периода снижение температуры было всего на 5 градусов, то последствия ядерного удара будут огромнейшим по силе и скорости распространения похолоданием.

    Уже более 50 лет человечество использует энергию мирного атома. Но проникновение в тайны атомных ядер привело и к созданию невиданного по своей мощности и последствиям оружию массового уничтожения. Речь идет о ядерном оружии. Сегодняшняя наша встреча посвящена видам, устройству и принципу его действия. Вы узнаете, чем грозит миру применение ядерных боеприпасов и как человечество борется против ядерной угрозы.

    Как все начиналось

    Рождение атомной эры в истории человеческой цивилизации связано с началом второй мировой войны. За год до её начала была открыта возможность реакции деления ядер тяжелых элементов, сопровождаемая выделением колоссальной энергии. Это дало возможность создания совершенно нового вида оружия, обладающего невиданной доселе разрушительной силой.

    Правительства ряда стран, включая США и Германию, привлекали к реализации этих планов лучшие научные умы и не жалели средств, для того, чтобы добиться приоритета в этой сфере. Успехи нацистов в расщеплении урана побудили Альберта Эйнштейна перед началом войны обратиться с письмом к президенту США. В этом послании он предупреждал об опасности, которая грозит человечеству, если в военном арсенале нацистов появится атомная бомба.

    Фашистские войска одну за другой оккупировали европейские страны. Началась вынужденная эмиграция учёных-атомщиков в США из этих стран. И в 1942 году в пустынных районах штата Нью-Мексико начал свою работу ядерный центр. Здесь собрались лучшие физики почти со всей западной Европы. Руководство этим коллективом осуществлял талантливый американский ученый Роберт Оппенгеймер.

    Мощные бомбардировки Англии немецкой авиацией вынудили английское правительство добровольно передать все разработки и ведущих специалистов в этой области США. Стечение всех этих обстоятельств позволило американской стороне занять ведущее положение в создании ядерного оружия. К весне 1944 года работы были завершены. После полигонных испытаний было решено нанести ядерные удары по японским городам.

    Первыми 6 августа 1945 года познали весь ужас ядерного удара жители Хиросимы. Живые существа за одно мгновение превратились в пар. А через 3 дня на головы ничего не подозревающих жителей города Нагасаки была сброшена вторая бомба под кодовым названием «Толстяк». Только тени на асфальте остались от 70 тысяч человек, бывших в это время на улице. Всего погибли более 300 000 человек, и 200 000 получили страшные ожоги, ранения и громадные дозы облучения.

    Результаты этой бомбардировки потрясли мир.

    Понимая всю опасность, возникшую для послевоенного мира, Советский Союз начал активнейшую деятельность по созданию эквивалентного оружия. Это были вынужденные меры, для противостояния возникшей угрозе. Курировал эту работу сам глава НКВД Лаврентий Берия. За 3,5 года он сумел в разрушенной войной стране создать совершенно новую отрасль - атомную промышленность. Научная часть была возложена на молодого советского физика-ядерщика И. В. Курчатова. В результате титанических усилий многих коллективов ученых, инженеров и других работников за четыре послевоенных года была создана первая советская атомная бомба. Она прошла успешные испытания на полигоне Семипалатинска. Упования Пентагона на монопольное владение атомным оружием не оправдались.

    Виды и доставка ядерных боеприпасов

    К ядерному оружию относятся боеприпасы, принцип действия которых основан на использовании ядерной энергии. Физические принципы её получения изложены в .

    К таким боеприпасам относятся атомные и водородные бомбы, а также нейтронное оружие. Все перечисленные виды вооружения являются оружием массового уничтожения.

    Ядерные боеприпасы устанавливаются на баллистических ракетах, авиабомбах, фугасах, торпедах и артиллерийских снарядах. К предполагаемой цели они могут доставляться крылатыми, зенитными и баллистическими ракетами, а также авиацией.

    Сейчас таким оружием обладают 9 государств, в общей сложности это более 16 тысяч единиц разных видов ядерного оружия. Использование даже 0,5% этого запаса способно погубить все человечество.

    Атомные бомбы

    Главное различие атомного реактора и атомной бомбы состоит в том, что в реакторе течение ядерной реакции контролируется и регулируется, а при ядерном взрыве её выделение происходит практически мгновенно.

    Внутри корпуса бомбы находится расщепляемый материал U-235 или Pu-239. Его масса должна превышать некое критическое значение, но до осуществления ядерного взрыва делящееся вещество разделено на две или более частей. Для начала ядерной реакции необходимо привести эти части в соприкосновение. Это осуществляется химическим взрывом тротилового заряда. Образовавшаяся при этом взрывная волна сближает все части расщепляемого материала, доводя его массу до сверхкритического значения. Для U-235 критическая масса составляет 50 кг, а для Pu–239 она равна 11 кг.

    Чтобы представить всю разрушительную мощь этого оружия, достаточно представить себе, что взрыв лишь 1 кг урана, эквивалентен взрыву 20 килотонн тротилового заряда.

    Для начала деления ядер необходимо воздействие нейтронов и в атомных бомбах предусмотрен их искусственный источник. Для уменьшения массы и размера расщепляемого материала, используют внутреннюю оболочку из бериллия или графита, отражающую нейтроны.

    Время взрыва длиться лишь миллионные доли секунды. Однако в его эпицентре развивается температура в 10 8 К, а давление достигает фантастического значения в 10 12 атм.

    Устройство и механизм действия термоядерного оружия

    Противостояние США и СССР в создании сверхоружия, происходило с переменным успехом.

    Особенное значение придавалось использованию энергии термоядерного синтеза, подобное тому, которое происходят на Солнце и других звездах. В их недрах происходит слияние ядер изотопов водорода, сопровождающееся образованием новых более тяжелых ядер (например, гелия) и выделением колоссальной энергии. Необходимым условием для запуска процесса термоядерного синтеза является температура в миллионы градусов и высокое давление.

    Разработчики водородных бомб остановились на следующей конструкции: в корпусе располагается плутониевый запал (атомная бомба малой мощности) и ядерное горючее - соединение изотопа лития-6 с дейтерием.

    Взрыв маломощного плутониевого заряда создает необходимое давление и температуру, а испускаемые при этом нейтроны, взаимодействуя с литием, образуют тритий. Синтез дейтерия и трития приводит к термоядерному взрыву со всеми вытекающими последствиями.

    На этом этапе победу одержали советские ученые. «Отцом» теории водородной бомбы в Советском Союзе явился .

    После ядерного взрыва

    После ослепительно яркой вспышки атомного наземного взрыва образуется огромное грибовидное облако. Исходящее от него световое излучение вызывает возгорание построек, техники и растительности. Люди и животные получают ожоги разной степени, а также необратимые поражения органов зрения.

    Тело ядерного гриба образуется благодаря нагретому взрывом воздуху. Воздушные массы, стремительно закручиваясь, взмывает до высоты 15-20 км, увлекая за собой частички пыли и дыма. Почти мгновенно образуется ударная волна - область огромного давления и температуры в десятки тысяч градусов. Она перемещается со скоростью в несколько раз превышающей скорость звука, сметая все на своем пути.

    Следующий поражающий фактор - это проникающая радиация, состоящая из потоков гамма излучения и нейтронов. Радиация ионизирует клетки живых существ, поражая нервную систему и мозг. Время ее воздействия 10-15 секунд, а дальность 2-3 км от эпицентра взрыва.

    На расстояние в сотни километров наблюдается радиоактивное загрязнение местности. Оно состоит из осколков деления ядерного горючего и усугубляется выпадением радиоактивных осадков. Интенсивность радиоактивного заражения максимальна после взрыва, но по истечению вторых суток ослабевает почти в 100 раз.

    Вездесущие нейтроны, ионизируя воздух, порождают кратковременный электромагнитный импульс, который способен вывести из строя электронную аппаратуру, нарушить проводную и беспроводную системы связи.

    Ядерное оружие называют оружием массового поражения, поскольку оно несет огромнейшие человеческие жертвы и разрушения непосредственно во время и сразу после взрыва. Радиация, полученная людьми и животными, оказавшимися в зоне поражения, становится причиной лучевой болезни, часто завершающейся гибелью всех облученных существ.

    Нейтронное оружие

    Разновидностью термоядерного оружия являются нейтронные боеприпасы. В них отсутствует оболочка, поглощающая нейтроны и помещен дополнительный источник этих частиц. Поэтому их главным поражающим фактором является проникающая радиация. Её воздействие приводит к гибели людей, оставляя почти нетронутыми постройки и технику противника.

    Борьба мирового сообщества против ядерной угрозы

    Совокупный запас ядерного оружия в мире сейчас эквивалентен 1 млн бомб сброшенных на Хиросиму. И тот факт, что пока удаётся жить без ядерной войны во многом заслуга ООН и всего мирового сообщества.

    Страны владеющие ядерным оружием, входят в так называемый «Ядерный клуб». Сейчас он насчитывает 9 участников. Этот список расширяется.

    СССР занял в ядерной политике очень чёткую позицию. В 1963 году именно в Москве был подписан договор, запрещающий испытания ядерного оружия в 3-х средах: в атмосфере, космосе и под водой.

    Более всеобъемлющий договор был принят на ассамблее ООН в 1996 году. Свои подписи по ним поставили уже 131 государство.

    Создана специальная комиссия, осуществляющая контроль над событиями, связанными с ядерными испытаниями. Несмотря на предпринимаемые усилия, ряд государств продолжают проводить ядерные испытания. Мы с вами стали свидетелями того, как Северная Корея провела шесть испытаний ядерного оружия. Она использует свой ядерный потенциал как акт устрашения и попытку занять господствующее положение в мире.

    Российская федерация сейчас занимает второе место в мире по ядерному потенциалу. Ядерные силы России состоят из наземного, авиационного и морского компонента. Но в отличие от КНДР военная мощь нашей страны служит фактором сдерживания, обеспечивающим мирное развитие государства.

    Если это сообщение тебе пригодилось, буда рада видеть тебя

    О людях часто говорят, что человек — самое опасное животное на планете. Мы, люди, построили самое смертоносное оружие, которое способно уничтожить все живое на планете, включая и нас самих. Ядерное оружие, по праву, считается самым опасным оружием на Земле. В этой статье мы собрали 15 самых важных фактов о ядерном оружии. Следует отметить, многие из этих фактов вселяют реальный ужас.

    Опасность ядерного оружия еще и в том, что считается, что ни одна страна не сможет проигнорировать его, в силу разрушительного эффекта применения. Таким образом, даже случайное или несанкционированное применение ЯО неизбежно повлечет себе ответ других ядерных держав, что приведет к гибели всего живого на Земле.

    15. Один ядерный взрыв может уничтожить всю жизнь на планете

    В 1950 ученый по имени Лео Силард, один из первооткрывателей ядерной цепной реакции, предположил, что ОДНА термоядерная бомба — при правильной конструкции — может уничтожить все человечество. Первоначально эта идея была отвергнута. Позднее были проведены ряд исследований, которые подтвердили возможность создания такой бомбы. При правильном подборе дополнительных компонентов, к слову — довольно распространенных, можно создать один заряд, одну термоядерную бомбу, способную уничтожить вся жизнь на нашей планете.

    14. Мощность ядерного оружия продолжает расти

    Сторонники ядерного оружия утверждают, что не стоит его боятся, т.к. в оно никогда не будет применено, а будет продолжаться использоваться в качестве сдерживающего фактора. Они считают, что сама угроза применения такого оружия сдерживает нападение одной сверхдержавы на другую. И даже в худшем случае, применение небольших тактических ядерных зарядов сможет помочь повернуть ход войны, не вызывая катастрофических последствий.

    Однако, практически все исследования в этой области носят теоретический характер. Мощность ЯО продолжает увеличиваться и сколько потребуется зарядов, чтобы дым от пожаров привел к ядерной зиме неизвестно.

    13. 8 стран обладают ядерным оружием. Официально…

    Официально, ядерным оружием обладают 8 стран: США, Китай, Россия, Франция, Индия, Пакистан, Северная Корея. Эти страны провели ядерные испытания и официально обладают ядерным оружием.

    Не официально же… Израиль, по слухам, также обладает некоторым количеством ядерных зарядов. Существуют вопросы и к Ирану, который официально свернул военную ядерную программу, но опять же по слухам, продолжает работать над своей ядерной бомбой.

    Ядерный клуб продолжает расти?

    12. Инцидент Вела

    22 сентября 1979 появилась информация о двойной вспышке света на островах принца Эдуарда, недалеко от Антарктиды. Такие вспышки характерны для ядерного оружия. Вспышки зафиксировал американский спутник Вела (Vela), который был запущен специально с целью отслеживать ядерную активность.
    Что интересно, и одновременно страшно, ни одна из стран до сих пор не взяла на себя ответственность за этот взрыв. Винят всех, включаю Израиль и ЮАР, кроме США.
    Есть мнение, что инцидента вообще не было, а произошел банальный сбой в аппаратуре спутника. Будем надеяться на это.

    11. Точное количество ядерных испытаний неизвестно

    Уже из всего прочитанного выше должно стать понятно, что ядерное оружие крайне опасно и следовательно страны должны быть крайне аккуратны при его испытаниях. Но и вообще без испытаний обойтись тоже нельзя. Так сколько испытаний ядерного оружия было на планете?

    Опять таки, отталкиваемся от официальной статистики:
    США — 1054
    СССР — 715
    Франция — 210
    Великобритания — 45
    Китай — 45
    Индия — 6
    Пакистан — 6
    Северная Корея — 5
    За период с 1945 по 1998 годы, самый короткий период между испытаниям составил два года.
    Только представьте себе влияние на окружающую среду более 2000 ядерных взрывов!

    Ядерный взрыв - процесс деления тяжелых ядер. Для того чтобы произошла реакция, необходимо как минимум 10 кг высокообогащенного плутония. В естественных условиях это вещество не встречается. Данное вещество получается в результате реакций, производимых в ядерных реакторах. Естественный уран содержит приблизительно 0,7 процентов изотопа U-235, остальное - уран 238. Для осуществления реакции необходимо, чтобы в веществе содержалось не менее 90 процентов урана 235.

    В зависимости от задач, решаемых ядерным оружием, от вида и расположения объектов, по которым планируются ядерные удары, а также от характера предстоящих боевых действий ядерные взрывы могут быть осуществлены в воздухе, у поверхности земли (воды) и под землей (водой). В соответствии с этим различают следующие виды ядерных взрывов:

    Воздушный (высокий и низкий)

    Наземный (надводный)

    Подземный (подводный)

    Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:

    Ударная волна

    Световое излучение

    Проникающая радиация

    Радиоактивное заражение местности

    Электромагнитный импульс

    Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. Она действует продолжительное время и обладает большой разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

    Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек ударная волна проходит около 1000 м, за 5 сек − 2000 м, за 8 сек − около 3000 м. Это служит обоснованием норматива № 5 ЗОМП "Действия при вспышке ядерного взрыва": отлично − 2 сек, хорошо − 3 сек, удовлетворительно − 4 сек.

    Поражающее действие ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства, прежде всего, определяются избыточным давлением и скоростью движения воздуха в ее фронте.

    Незащищенные люди могут, кроме того, поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны.



    Ударная волна способна наносить поражения и в закрытых помещениях, проникая туда через щели и отверстия. Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые.

    Легкие поражения характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей.

    Поражение средней тяжести характеризуются кратковременной потерей сознания с последующими тяжёлыми головными болями, нарушениями памяти, повреждением органов слуха, кровотечением из носа и ушей, вывихами конечностей.

    Тяжелые поражения характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей.

    Степень поражения ударной волной зависит, прежде всего, от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние − до 2 км, тяжелые − до 1,5 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном − в воде. Кроме того, при этих видах взрывов часть энергии расходуется на создание ударной волны и в воздухе.

    Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.



    От воздействия ударной волны защищают убежища, в большой степени ослабляют её воздействие укрытия. На значительном расстоянии от места взрыва защитой могут служить складки местности и местные предметы.

    Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение.

    Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Она состоит из нагретых до высокой температуры паров веществ ядерного боеприпаса, воздуха, а при наземных взрывах − и частиц грунта. Размеры светящейся области и время её свечения зависят от мощности, а форма − от вида взрыва. Световое излучение распространяется со скоростью около 300 тыс. км/ч, т.е. практически мгновенно. Время действия светового излучения для ядерных взрывов сверхмалой мощности составляет около 0,2 с, малой мощности 1-2 с, средней мощности 2-5 с, крупной мощности 5-10 с и сверхкрупной мощности 20-40 с. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца.

    Распространение светового излучения в большей степени зависит от прозрачности атмосферы. В дождливую, снежную погоду, при сильном тумане, в запылённом (задымлённом) воздухе действие светового излучения значительно слабее.

    Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может приводить к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия.

    Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения.

    Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком, они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса.

    При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности.

    В зависимости от воспринятого светового импульса ожоги делятся на четыре степени.

    Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности и отёки.

    При ожогах второй степени на коже появляются пузыри.

    При ожогах третьей степени наблюдается омертвление кожи и образование язв.

    При четвёртой степени - обугливание кожи.

    При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 Мгт это расстояние увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях 2,9 и 4,4 км и ожоги третьей степени - на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и 1 Мгт.

    Вспышка ядерного взрыва служит первым сигналом для принятия мер защиты. Любая непрозрачная преграда, любой объект создающий тень, может служить защитой от светового излучения.

    От воздействия светового излучения защищают убежища и укрытия, а также складки местности.

    Проникающая радиация представляет собой невидимый поток гамма - лучей и нейтронов, испускаемых из зоны ядерного взрыва. Время действия гамма-лучей до 10 - 15 с, нейтронов − доли секунды. Гамма-лучи и нейтроны распространяются во все стороны от центра взрыва на сотни метров и даже на расстояния до 2 - 3 км. С увеличением расстояния от взрыва количество гамма-лучей и нейтронов, проходящее через единицу поверхности, уменьшается.

    При подземном и подводном ядерных взрывах действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма лучей водой.

    Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

    Поражающее действие проникающей радиации определяется способностью гамма лучей и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма-лучи и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

    Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (Р). Доза поглощения радиации измеряется в радах (рад). Соотношение между рентгеном и радом зависит от материала среды (для биологической ткани 1 Р = 0,93 рад). Дозе радиации 1 Р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов.

    В зависимости от дозы излучения различают четыре степени лучевой болезни.

    Первая возникает при получении человеком дозы от 100 до 250 Р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя.

    Вторая степень лучевой болезни развивается при получении дозы 250-400 Р; в этом случае признаки поражения - головная боль, повышение температуры, желудочно-кишечное расстройство - проявляются более резко и быстрее, личный состав в большинстве случаев выходит из строя. В большинстве случаев лучевая болезнь второй степени заканчивается выздоровлением поражённых через 1,5 - 2 месяца.

    Третья степень лучевой болезни возникает при дозе 400 - 700 Р; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением, жаждой, рвотой, поносом, часто с кровью, кровоизлияниями во внутренние органы, изменениями в составе крови и другими недомоганиями. Выздоровление может наступить через несколько месяцев при своевременном и эффективном лечении. Нередко приводит к смертельному исходу.

    Четвёртая степень возникает при дозах радиации выше 700 Р и приводит к смертельному исходу.

    При дозах 1000 Р и более развивается молниеносная форма лучевой болезни, при которой личный состав быстро теряет боеспособность и погибает через несколько дней.

    Допустимые дозы облучения людей:

    Однократная - 50 Р;

    Многократная;

    В течение 10 суток - 100 Р;

    В течение 3 месяцев - 200 Р;

    В течение года - 300 Р.

    Защитой от проникающей радиации являются убежища. Ослабляют воздействие проникающей радиации на человека укрытия, складки местности и местные предметы.

    Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловлено выпадением радиоактивных веществ из облака ядерного взрыва и образованием наведённой радиоактивности в грунте вследствие воздействия нейтронного потока.

    При выпадении радиоактивной пыли на местности образуются зоны заражения, пребывание в которых может представлять опасность для жизни и здоровья людей. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, если через час после взрыва уровень радиации составит 1100 Р/ч, то через 7 часов он будет равен примерно 10 Р/ч, а через 49 часов 1 Р/ч.

    При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бетаактивны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики: от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру. Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кт равна 6 км, для боеприпаса мощностью 10 Мгт она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину нескольких десятков километров. Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм. На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

    Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 100 м и более. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

    Поражающее действие Эми обусловлено возникновением напряжений и током в проводниках различной протяженности расположенных в воздухе, земле, на технике и других объектах.

    Под действием ЭМИ в аппаратуре наводятся электрические токи и напряжения, которые могут вызывать пробои изоляции, повреждения полупроводниковых приборов и других элементов радиотехнических устройств.

    Если ядерные взрывы произойдут вблизи линий энергоснабжения и связи, имеющих большую протяженность, то наведенные в них напряжения могут по проводам распространяться на значительные расстояния, вызывая при этом повреждения радиоаппаратуры и находящихся вблизи нее людей.