Химические элементы земной коры. Какой главный элемент, составляющий земную кору

Для тех людей, кто невнимательно слушал учителя в школе, будет интересно узнать, что главный элемент, составляющий земную кору, - это кислород.

Земная кора, ее особенности

Что делать с этим стихийным бедствием?

Предотвратить землетрясение невозможно. Силы, которые провоцируют это бедствие, неподконтрольны человеку, ибо их источник находится намного глубже, чем смогло проникнуть человечество. Мы только "ковыряем" верхний слой (пока что в рамках 13 километров), в то время, когда самое глубокое зафиксированное местонахождение эпицентра землетрясения было 750 километров.

Но было сделано все, чтобы предвидеть возможное бедствие, его силу и место. Для этого используют сейсмографы.

Постоянные исследования дают возможность составить картину сейсмологической активности и брать это в учет при строительстве. Инженеры, в свою очередь, работают над новыми конструкциями, способными выдерживать такую активность. Ведётся постоянная работа над информированием населения о том, как вести себя в случае землетрясения.

Страшное явление, которое может возникнуть вследствие такого бедствия, - это цунами. Так, в 2011 г. огромные волны океанской воды опустошили земли Северо-Восточной Японии, вследствие чего погибли около 16 тысяч человек, а более миллиона зданий было разрушено полностью или частично. В том числе три реактора на атомной электростанции "Фукусима-1". Свыше трехсот тысяч человек остались без крыши над головой. Это же событие повлияло на скорость вращения Земли, но вряд ли это заметно для человека, так как день стал короче всего на 1,8 микросекунды. Вот так, затронув тему, каким есть главный элемент, составляющий земную кору, мы перешли к проблемам, которые могут возникнуть из-за процессов, скрытых ею.

Анализ химического и минерального состава Земли имеет существенный теоретический и практический интерес: он может приоткрыть многие тайны образования и эволюции нашей планеты и дать ключ к более эффективному поиску минеральных ресурсов. О среднем составе Земли судят по веществу, из которого состоят метеориты, так как считается, что именно из этого материала в свое время произошли планеты Солнечной системы, в том числе Земля . Выделяют каменные (97,7 % всех находок), железокаменные (1,3 %) и железные (5,6 %) метеориты. Их химический анализ позволяет предположить, что в составе Земли преобладают железо (30-36 %), кислород (29-31 %), кремний (14-15 %) и магний (13-16 %). Кроме того, количество серы, никеля, алюминия и кальция измеряется единицами процентов каждый. Все остальные элементы присутствуют в количестве, меньшем 1 %.

Наиболее достоверные сведения имеются о химическом составе самой верхней части земной коры материков, доступной для непосредственного наблюдения и анализа . Первые данные были опубликованы в 1889 г. американским ученым Ф. Кларком, который получил их как средние арифметические имевшихся в его распоряжении 6000 результатов химического анализа различных горных пород. В дальнейшем эти данные уточнялись. В составе земной коры наиболее распространены следующие восемь химических элементов, составляющих в сумме свыше 98 % по весу: кислород (46,5 %), кремний (25,7 %), железо (6,2 %), кальций (5,8 %), магний (3,2 %), натрий (1,8 %), калий (1,3%). Еще пять элементов содержатся в земной коре в количестве десятых долей процента: титан (0,52 %), углерод (0,46 %), водород (0,16 %), марганец (0,12 %), сера (0,11 %). На все остальные элементы приходится около 0,37 %.

В 1924 г. норвежский исследователь В.М. Гольдшмит предложил широко используемую и в настоящее время геохимическую классификацию химических элементов, разделив их на четыре группы:

  • 0 сидерофильная группа химических элементов включает в себя элементы семейства железа, платиновые металлы, а также молибден и рений (всего 11 элементов), по геохимическим особенностям близкие железу;
  • 0 литофильные элементы составляют группу из 53 элементов, составляющих основную массу минералов земной коры (литосферы): кремний, титан, цирконий, фтор, хлор, алюминий, натрий, калий, магний, кальций и т.д.;
  • 0 халькофильная группа химических элементов представлена серой, сурьмой, висмутом, мышьяком, селеном, теллуром и рядом тяжелых цветных металлов (медь и др.) - всего 19 элементов, склонных к образованию природных сульфидов, селенидов, тел- луридов, сульфосолей и иногда встречающихся в самородном состоянии (золото, серебро, ртуть, висмут, мышьяк и др.);

О к атмофильной группе причислены химические элементы (азот, водород, благородные газы), типичные для земной атмосферы, в составе которой они присутствуют в виде свободных атомов или молекул.

Земную кору слагают разные группы горных пород, различающихся условиями образования и составом. Горные породы представляют собой минеральные агрегаты, т.е. определенное сочетание минералов. Минервами называют природные химические соединения или самородные химические элементы, которые возникли в результате определенных физико-химических процессов, протекающих в земной коре и на ее поверхности. Большинство минералов представляет собой кристаллические тела, и лишь немногие из них - аморфные. Формы природных кристаллов разнообразны и зависят от закономерного расположения в пространстве микрочастиц - атомов, ионов, молекул, образующих структуру кристаллов, или их кристаллическую (пространственную) решетку. Для формирования этой структуры большое значение имеют физико-химические и термодинамические условия. Так, графит - самый мягкий (твердость 1) минерал - образует таблитчатые кристаллы, а алмаз - самый твердый минерал (твердость 10) - имеет самую совершенную кубическую группу симметрии. Такая разница в свойствах связана с разницей в расположении атомов в кристаллической решетке.

В настоящее время известно более 2500 природных минералов, не считая разновидностей, но только немногие (около 50) - породообразующие - участвуют в образовании горных пород, слагающих земную кору. Остальные минералы в горных породах встречаются в виде незначительных примесей и называются акцессорными минералами. Классификация минералов основана на их химическом составе и кристаллической структуре. Главнейшие породообразующие и рудные минералы объединяются в несколько минеральных классов:

  • 0 самородные элементы: самородное золото, серебро, медь, платина, графит, алмаз, сера;
  • 0 сульфиды: пирит, халькопирит, галенит, киноварь;

О галоидные соединения: галит (поваренная соль), сильвин, карналлит и флюорит;

О оксиды и гидроксиды: кварц, опал, магнетит (магнитный железняк), гематит, корунд, лимонит, гетит;

О карбонаты: кальцит (известковый шпат), прозрачная разновидность которого называется исландским шпатом, доломит;

О фосфаты: апатит, фосфорит;

О сульфаты: гипс, ангидрит, мирабилит (глауберова соль), барит;

О вольфраматы: вольфрамит;

О силикаты: кварц, оливин, берилл, пироксены, роговая обманка, слюды, змеевик, тальк, глауконит, полевые шпаты.

Особый класс минералов составляют силикаты. В этот класс входят наиболее распространенные в земной коре (более 90 % по весу) породообразующие минералы, чрезвычайно сложные по химическому составу и участвующие в строении всех типов горных пород, в первую очередь магматических и метаморфических. Они составляют примерно треть всех известных минералов. Иногда в силикаты включают кварц. Основу кристаллической решетки силикатов составляет ионная четырехвалентная группировка 8Ю 4 .

Еще древние рудокопы подметили, что в рудных месторождениях отдельные минералы всегда встречаются совместно. Совместное нахождение минералов обозначается термином «парагенезис» или «парагенез» (греч. «пара» - возле, подле). Для каждого процесса ми- нералообразования характерны свои закономерные сочетания минералов. В качестве примеров парагенезиса можно привести кварц и золото, халькопирит и серебряные руды. Знание парагенезиса минералов облегчает задачу поиска полезных ископаемых по их спутникам. Так, спутник алмаза пироп (разновидность граната) помог в свое время открыть коренные месторождения алмазов в Якутии.

Определенное сочетание минералов, как указывалось выше, образует горные породы - природные агрегаты минералов более или менее постоянного минералогического и химического состава, образующие самостоятельные геологические тела, слагающие земную кору. Форма, размеры и взаимное расположение минеральных зерен обусловливают структуру и текстуру горных пород. Слагающие земную кору горные породы в большинстве своем представляют агрегат многих минералов, реже они состоят из зерен одного минерала. Минеральный состав, строение и формы залегания горной породы отражают условия ее образования.

По происхождению горные породы разделяют на три группы:

  • 1) магматические горные породы, образующиеся в результате внедрения (интрузивные породы) в земную кору или извержения на поверхность магмы (эффузивные породы). Излившаяся на поверхность магма называется лавой. С магматическими породами связаны многие месторождения металлических полезных ископаемых, а также апатитов, алмазов и т.д.;
  • 2) осадочные горные породы, образовавшиеся при осаждении разрушенных магматических пород и некоторыми другими путями в океане, морях, озерах и реках. В их составе выделяют обломочные, глинистые, химические и органогенные. Как полезные ископаемые имеют значение следующие осадочные породы: нефть, газ, уголь, торф, бокситы, фосфориты и др.;
  • 3) метаморфические породы, т.е. преобразованные и из магматических, и из осадочных. В метаморфических условиях формируются железные, медные, полиметаллические, урановые и другие руды, а также графит, драгоценные камни, огнеупоры и т.п. Иногда из группы метаморфических выделяют как самостоятельный класс метасоматические горные породы, образовавшиеся в результате метасоматизма - процесса замещения одних минералов другими с существенными изменениями химического состава горной породы, но с сохранением ее объема и твердого состояния при воздействии растворов высокой химической активности. При этом происходит миграция химических элементов.

Химический состав земной коры

Наименование параметра Значение
Тема статьи: Химический состав земной коры
Рубрика (тематическая категория) Образование

Литосферные плиты и дрейф континœентов

Строение земной коры (континœентальная и океаническая кора)

Самые верхние слои земной коры состоят преимущественно из пластов осадочных горных пород, образовавшихся путем осаждения различных мелких частиц, главным образом в морях и океанах. В этих пластах захоронены остатки животных и растений, населявших в прошлом земной шар.
Размещено на реф.рф
Οʜᴎ с течением времени превратились в окаменелости. Общая мощность (толщина) осадочных пород в редких случаях достигает 15-20 км. Средняя скорость распространения в них продольных колебаний от 2 до 5 км/с. Сейсмические волны распространяются в глубинœе Земли с различными скоростями на континœентах и на дне океана. Отсюда ученые сделали вывод, что на Земле существует два главных типа твердой земной коры: континœентальный и океанический.

Мощность коры континœентального типа в среднем 30-40 км, а под горами достигает местами 70 км. Континœентальная часть земной коры распадается на ряд слоев, число и мощность которых изменяются от района к району. Обычно ниже осадочных пород выделяют два главных слоя: верхний - гранитный, близкий по физическим свойствам и составу к граниту, и нижний - базальтовый (предполагается, что он состоит из более тяжелых пород, главным образом из базальта). Толщина каждого из этих слоев в среднем 15-20 км.

Океаническая кора тоньше - 3-7 км. По составу и свойствам она ближе к веществу базальтового слоя континœентальной коры, т. е., видимо, состоит главным образом из базальта или других пород, богатых магнием и желœезом. Но данный тип коры свойствен только глубоким участкам дна океанов - не менее 4 тыс. м. На дне океанов есть области, где земная кора имеет строение континœентального или промежуточного типа. Базальтовый слой отделяется от нижезалегающих пород поверхностью, получившей название поверхности Мохоровичича (по имени открывшего ее югославского ученого). Скорость сейсмических волн глубже этой поверхности сразу резко увеличивается до 8,2 км/с, что обусловлено, вероятно, изменением упругих свойств и плотности вещества Земли.

Литосфера состоит из: 7 больших, 7 малых и множества микроплит. Литосферные плиты постоянно движутся со скоростями от 1до 20 см/год. Изучение истории перемещения плит показало, что с периодом 500-600 миллионов лет блоки континœентальной коры собираются в единый суперконтинœент. Потом он распадается на континœенты и цикл повторяется.

· Гондвана

· Лавразия

· Евразия

Химический состав земной коры был определœен по результатам анализа многочисленных образцов горных пород и минœералов, выходящих на поверхность земли при горообразовательных процессах, а также взятых из горных выработок и глубоких буровых скважин.

Сегодня земная кора изучена на глубину до 15-20 км. Она состоит из химических элементов, которые входят в состав горных пород.

Наибольшее распространение в земной коре имеют 46 элементов, из них 8 составляют 97,2-98,8 % ее массы, 2 (кислород и кремний) -75 % массы Земли.

Первые 13 элементов (за исключением титана), наиболее часто встречающиеся в земной коре, входят в состав органического вещества растений, участвуют во всœех жизненно необходимых процессах и играют важную роль в плодородии почв. Большое количество элементов, участвующих в химических реакциях в недрах Земли, приводит к образованию самых разнообразных соединœений. Химические элементы, которых больше всœего в литосфере, входят в состав многих минœералов (из них в основном состоят разные породы).

Отдельные химические элементы распределяются в геосферах следующим образом: кислород и водород заполняют гидросферу; кислород, водород и углерод составляют основу биосферы; кислород, водород, кремний и алюминий являются основными компонентами глин и песчаных пород или продуктов выветривания (они в основном составляют верхнюю часть коры Земли).

Химические элементы в природе находятся в самых различных соединœениях, называемых минœералами.

7.Минœералы в земной коре – определœение, классификация, свойства.

Земная кора состоит в основном из веществ, называемых минœералами - от редких и чрезвычайно ценных алмазов до различных руд, из которых получают металлы для наших повсœедневных нужд.

Определœение минœералов

Часто встречающиеся минœералы, такие как полевые шпаты, кварц и слюда, называются породообразующими. Это отличает их от минœералов, которые находят только в небольших количествах. Кальцит - еще один породообразующий минœерал. Он формирует известняковые породы.

В природе существует так много минœералов, что минœералогам пришлось выработать целую систему их определœения, основанную на физических и химических свойствах. Иногда распознать минœерал помогают очень простые свойства, к примеру, цвет или твердость, а порой для этого требуются сложные тесты в лабораторных условиях с применением реагентов.

Некоторые минœералы, такие как лазурит (синий) и малахит (зелœеный), можно распознать по цвету. Но цвет часто обманчив, потому что у многих минœералов он довольно широко варьируется. Различия в цвете зависят от примесей, температуры, освещения, радиации и эрозии.

Классификация минœералов

1. Самородные элементы

Около 90 минœералов - 0,1% массы земной коры

Золото, платина, серебро - драгоценные металлы, медь - цветной металл, алмаз - драгоценный камень, графит, сера, мышьяк

2 . Сульфиды

Около 200 минœералов - 0,25 % массы земной коры

Сфалерит - цинковая руда, галенит - свинцовая руда, халькопирит - медная руда, пирит - сырье для химической промышленности, киноварь - ртутная руда

3 . Сульфаты

Около 260 минœералов, 0,1% массы земной коры

Гипс, ангидрит, барит - цементное сырье, поделочный камень и др.

4 . Галлоиды

Около 100 минœералов

Галит - каменная соль, сильвин - калийное удобрение, флюорит - фторид

5 . Фосфаты

Около 350 минœералов - 0,7% массы земной коры

Фосфорит - удобрение

6 . Карбонаты

Около 80 минœералов, 1,8% массы земной коры

Кальцит, арагонит, доломит - строительный камень; сидерит, родохрозит - руды желœеза и марганца

7. Окислы

Около 200 минœералов, 17% массы земной коры

Вода, лед; кварц, халцедон, яшма, опал, кремень, корунд -драгоценные и полудрагоценные камни; бокситовые минœералы - руды алюминия, минœералы руд желœеза, олова, марганца, хрома и др.

8. Силикаты

Около 800 минœералов, 80% земной коры

Пироксены, амфиболы, полевые шпаты, слюды, серпентин, глинистые минœералы - основные породообразующие минœералы; гранаты, оливин, топаз, адуляр, амазонит - драгоценные и полудрагоценные камни.

Свойства

Блеск - весьма характерный признак многих минœералов. В одних случаях он очень похож на блеск металлов (галенит, пирит, арсенопирит), в других - на блеск стекла (кварц), перламутра (мусковит). Немало и таких минœералов, которые даже в свежем изломе выглядят матовыми, т. е. не имеют блеска.

Замечательной особенностью многих природных соединœений служит их окраска. Для ряда минœералов она постоянна и весьма характерна. К примеру: киноварь (сернистая ртуть) всœегда обладает карминно-красным цветом; для малахита характерна яркозелœеная окраска; кубические кристаллики пирита легко узнаются по металлически-золотистому цвету и т. д. Наряду с этим окраска большого количества минœералов изменчива. Таковы, к примеру, разновидности кварца: бесцветные (прозрачные), молочно-белые, желтовато-бурые, почти черные, фиолетовые, розовые.

Минœералы различаются и по другим физическим свойствам. Одни из них настолько тверды, что легко оставляют царапины на стекле (кварц, гранат, пирит); другие сами царапаются обломками стекла или острием ножа (кальцит, малахит); третьи обладают настолько низкой твердостью, что легко чертятся ногтем (гипс, графит). Одни минœералы при раскалывании легко расщепляются по определœенным плоскостям, образуя обломки правильной формы, похожие на кристаллы (каменная соль, галенит, кальцит); другие дают в изломе кривые, "раковистые" поверхности (кварц). Широко варьируют и такие свойства, как удельный вес, плавкость и др.

Столь же различны и химические свойства минœералов. Одни легко растворяются в воде (каменная соль), другие растворимы лишь в кислотах (кальцит), третьи устойчивы даже по отношению к крепким кислотам (кварц). Большинство минœералов хорошо сохраняется в воздушной среде. При этом известен ряд природных соединœений, легко подвергающихся окислению или разложению за счёт кислорода, углекислоты и влаги, содержащихся в воздухе. Давно установлено также, что некоторые минœералы под воздействием света постепенно меняют свою окраску.

Все эти свойства минœералов находятся в причинной зависимости от особенностей химического состава минœералов, от кристаллической структуры вещества и от строения атомов или ионов, входящих в состав соединœений.

Химический состав земной коры - понятие и виды. Классификация и особенности категории "Химический состав земной коры" 2017, 2018.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЛИТОСФЕРЫ

Образование литосферы

После того как масса планеты достигла приблизительно современного значения около 4,6 млрд. лет назад, началось ее само­разогревание. Источников тепла было два – гравитационное сжа­тие и радиоактивный распад. В результате температура внутри Земли стала повышаться и началось плавление металлов. Мантия образовалась в результате дифференциации первичного вещества по плотности. Железо и никель, опустившись, сконцентрировались в ядре, а в мантии накопилось относительно легкое вещество - пиролит. Процесс дифференциации вещества мантии продолжается и в настоящее время.

Строение Земли

При современных технических средствах мы не можем непо­средственно наблюдать и изучать глубинные слои Земли. Самая глубокая буровая скважина на Земле не достигает 8 км.Более глубокие слои изучаются косвенными геофизическими методами, на основании которых можно лишь строить гипотезы. Наиболее важным является сейсмический метод, который по скорости распространения в Земле упругих волн, вызванных землетрясением или искусственными взрывами, дает возможность судить об упругих свойствах вещества, залегающего на разной глубине. Так на основании многочисленных измерений установлено, что скорость распространения сейсмических волн меняется скачкообразно на определенных глубинах. Это связано, прежде всего, со скачкообразным изменением плотности слоев Земли (Таблица 8.2.1).

Первая зона раздела, называемая зоной Мохоровичича , находится на средней глубине 33 км, вторая – на средней глубине 2900 км.Эти зоны делят Землю на три основных слоя: кору, мантию и ядро (Рисунок 8.2.1).

Кора – верхняя твердая каменная оболочка Земли. По физическим свойствам кору делят на три слоя: осадочный, гранитный и базальтовый (Рисунок 8.2.2). По мощности и строению выделяют два основных типа коры: материковый и океанический,

Рисунок 8.2.1 – Оболочки Земли, выделяемые по скорости прохождения сейсмических волн



(Богомолов, Судакова, 1971)

в промежуточной полосе между ними находится кора переходного типа. Материковая кора имеет среднюю толщину 35 км (до 80 кмв горных странах) и состоит из трех слоев: осадочный мощно­стью 0 – 15 км, гранитный средней мощностью 10 км и базальтовый средней мощностью 20 км. Осадки представлены в основном глинами, песками и известняками. Толщина океанической коры в среднем 5 км: осадочный слой имеет толщину около 1,5 км, гранитный слой отсутствует, базальтовый имеет мощность около 5 км. Названия гранитный и базальтовый им даны не за их минералогический состав, а потому что скорость прохождения сейсмических волн в этих слоях соответствует скорости сейсмических волн в граните и базальте.

Рисунок 8.2.2 – Строение земной коры: 1 – вода, 2 – осадочный слой, 3 – гранитный слой,

4 – базальтовый слой, 5 – мантия (Неклюкова, 1975)

В жизни земной коры происходят непрерывные изменения – идет формирование и развитие больших прогибов и поднятий. В областях стабильных, так назы­ваемых платформенных, поднятия и прогибы измеряются сотнями километров, а скорость вертикальных движений измеряется долями миллиметра в год. В подвижных, так назы­ваемых геосинклинальных зонах, прогибы и поднятия имеют удлинен­ную форму порядка 50 – 100 км, а скорость вертикального движе­ния порядка 1 см в год. Причина вертикальных движений кроется в мантии Земли.

Мантия оболочка Земли, отличающаяся от коры главным образом физическими параметрами. Она состоит из окислов магния, железа и кремния, которые и образуют магму. Давление в мантии, возрастает с глубиной и достигает на границе ядра 1,3 млн. атмосфер. Плотность мантии увеличивается от 3,5 в верхних слоях до 5,5 г/см 3 на границе ядра. Температура вещества мантии соответственно увеличивается примерно от 500°С до 3800°С. Несмотря на высокую температуру, ман­тия находится в твердом состоянии.

На глубинах от 100 до 350 км, особенно в пределах 100 – 150 км, сочетание тем­пературы и давления тако­во, что вещество находится в размягченном или рас­плавленном состоянии. Этот слой плавления и повышен­ной активности называется астеносферой, иногда – волноводом. Конвекционные токи порождают горизонтальные астеносферные течения. Их скорость достигает нескольких десятков санти­метров в год. Эти течения привели к расколу литосферы на от­дельные глыбы и к их горизонтальному перемещению, известному как дрейф материков. В астеносфере находятся вулканические очаги и центры глубокофокусных землетрясений.

Над астеносферой проводится нижняя граница литосферы. Жизнь земной коры, ее вертикальные и горизонтальные движе­ния, вулканизм и землетрясения тесно связаны с верхней мантией. Поэтому в литосферусовременная наука включает земную кору и самую верхнюю мантию до астеносферы, до глубины около 100 км.

Мантия простирается от земной коры до глубины 2900 км, где граничит с ядром, находящимся в середине Земли.

Таблица 8.2.1 – Глубины и основные свойства геосфер (Шубаев, 1979)

Название геосферы Глубина, км Плотность, г/см 3 Температура, ºС Доля в общей массе, %
Земная кора 5-40 до 70 2,7-2,9 0,8
Мантия верхняя 40-400 3,6 1400-1700 10,4
средняя 400-960 4,7 1700-2400 16,4
нижняя 960-2900 5,6 2900-4700 41,0
Ядро 2900-6371 свыше 11,5 31,5

Ядро – центральная часть Земли не совсем ясной химической и физической природы. С начала XX в. существует гипотеза, что ядро на 85 – 90% со­стоит из железа; во внешнем жидком ядре к нему добав­ляется кислород, а во внут­реннем – никель. По современным дан­ным, больше сторонников имеет гипотеза сили­катного ядра. Однако независимо от состава химических элементов для ядра, в силу особых физических условий, характерно полное вырождение химических свойств вещества. Температура ядра по­рядка 4000°С, давление в центре Земли более 3,5 млн. атмосфер. При таких условиях вещество переходит в так называемую металли­ческую фазу, электронные оболочки атомов разрушаются и обра­зуется электронная плазма отдельных химических элементов. Веще­ство становится более плотным и насыщенным свободными электро­нами. Огромные кольцевые вихри свободных электронов, возника­ющие в ядре, порождают, вероятно, постоянное магнитное поле Земли, которое прости­рается в околоземное пространство на несколько земных радиусов. Образование магнитосферы и изоляция земной природы от плазмы солнечной короны было первым и одним из важнейших условий зарождения жизни, развития биосферы и становления гео­графической оболочки.

Внешнее ядро – жидкое. Плотность внешнего ядра в верхней части около 10,0 г/см 3 . Внутреннее ядро– твер­дое, его плотность доходит до 13,7 г/см 3 .

Химический состав земной коры

Распространение химических элементов в земной коре впервые количественно оценил американский ученый Ф.У. Кларк. В его честь среднее значение относительного содержания химического элемента в земной коре принято называть кларком .

Все элементы земной коры, согласно их кларкам, можно условно разбить на две группы:

  1. Элементы, имеющие большие кларки. В эту группу входят (кларки приведены по Виноградову, 1960):

Сумма этих 8 этих элементов составляет 99,03%. В эту же группу входят водород (Н – 0,1%) и титан (Ti – 0,7%). Элементы этой группы образуют самостоятельные химические соединения, их называют главными .

  1. Элементы с малыми кларками . В эту группу входят все остальные элементы в земной коре, они большей частью рассеяны среди химических соединений других элементов, их называют рассеяными

За границу между группами условно принимают среднее содержание химического элемента, равное 0,1%. В земной коре преобладают легкие атомы, занимающие начальные клетки периодической системы, ядра которых содержат небольшое количество протонов и нейтронов. Также преобладают элементы с четными порядковыми номерами и атомными массами.

Процессы, происходящие в глубинах Земли, влияют на образование горных пород, на землетрясения и вулканические извержения, на медленные колебания поверхности суши и морского дна и на другие явления, преобразующие поверхность Земли. Поэтому, изучая географическую оболочку, необ­ходимо знать строение Земли и природу ее внутренних слоев.

Химический состав земной коры

В составе земной коры - множество элементов, но основную её часть составляют кислород и кремний.

Средние значения химических элементов в земной коре носят название кларков. Название было введено советским геохимиком А.Е. Ферсманом в честь американского геохимика Франка Уиглсуорта Кларка, который проанализировав результаты анализа тысяч образцов пород рассчитал средний состав земной коры. Вычисленный Кларком состав земной коры был близок к граниту - распространённой магматической горной породе в континентальной земной коре Земли.

После Кларка определением среднего состава земной коры занялся норвежский геохимик Виктор Гольдшмидт. Гольдшмидт сделал предположение, что ледник, двигаясь по континентальной коре соскребает и смешивает выходящие на поверхность горные породы. Поэтому ледниковые отложения или морены отражают средний состав земной коры. Проанализировав состав ленточных глин, отложившихся на дне Балтийского моря во время последнего оледенения, учёный получил состав земной коры, который очень походил на состав земной коры вычисленный Кларком.

В последствии состав земной коры изучался советскими геохимиками Александром Виноградовым, Александром Роновым, Алексеем Ярошевским, немецким учёным Г. Ведеполем.

После анализа всех научных работ было выяснено, что наиболее распространенным элементом в составе земной коре является кислород. Его кларк - 47%. Следующий аосле кислорода по распространенности химический элемент - кремний с кларком 29,5%. Остальными распространенными элементами являются: алюминий (кларк 8,05), железо (4,65), кальций (2,96), натрий (2,5), калий (2,5), магний (1,87) и титан (0,45). В совокупности на эти элементы составляют 99,48% от всего состава земной коры; они образуют многочисленные химические соединения. Кларки остальных 80 элементов составляют всего 0,01-0,0001 и поэтому такие элементы называются редкими. Если же элемент не только редкий, но и обладает слабой способностью к концентрированию, его называют редким рассеянным.

В геохимии также употребляют термин «микроэлементы», под которым понимают элементы, кларки которых в данной системе менее 0,01. А.Е. Ферсман построил график зависимости атомных кларков для чётных и нечётных элементов периодической системы. Выявилось, что с усложнением строения атомного ядра кларки уменьшаются. Но линии, построенные Ферсманом, оказались не монотонными, а ломанными. Ферсман прочертил гипотетическую среднюю линию: элементы, расположенные выше этой линии, он назвал избыточными (О, Si, Са, Fe, Ва, РЬ и т.д.), ниже - дефицитными (Ar, Не, Ne, Sc, Со, Re и т.д.).

Ознакомиться с распространением важнейших химических элементов в земной коре можно с помощью этой таблицы:

Хим. элемент Порядковый номер Содержание, в % от массы всей земной коры Молярная масса Содержание, % количество вещества
Кислород O 8 49,13 16 53,52
Кремний Si 14 26,0 28,1 16,13
Алюминий Al 13 7,45 27 4,81
Железо Fe 26 4,2 55,8 1,31
Кальций Ca 20 3,25 40,1 1,41
Натрий Na 11 2,4 23 1,82
Калий K 19 2,35 39,1 1,05
Магний Mg 12 2,35 34,3 1,19
Водород H 1 1,00 1 17,43
Титан Ti 22 0,61 47,9 0,222
Углерод C 6 0,35 12 0,508
Хлор Cl 17 0,2 35,5 0,098
Фосфор Р 15 0,125 31,0 0,070
Сера S 16 0,1 32,1 0,054
Марганец Mn 25 0,1 54,9 0,032
Фтор F 9 0,08 19,0 0,073
Барий Ва 56 0,05 137,3 0,006
Азот N 7 0,04 14,0 0,050
Прочие элементы ~0,2

Распределение химических элементов в земной коре подчиняется следующим закономерностям:

1. Закону Кларка-Вернадского, который гласит, что все химические элементы есть везде (закон о всеобщем рассеянии);

2. С усложнением строения атомного ядра химических элементов, его утяжелением, кларки элементов уменьшаются (Ферсман);

3. В земной коре преобладают элементы с чётными порядковыми номерами и атомными массами.

4. Среди соседних элементов у четных всегда кларки выше, чем у нечетных (установили итальянский ученый Оддо и американский Гаркис).

5. Особенно велики кларки элементов, атомная масса которых делится на 4 (O, Mg, Si, Са...), а начиная с Аl, наибольшими кларками обладает каждый 6-й элемент (O, Si, Са, Fe).